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ALMOST SURE AND MOMENT EXPONENTIAL STABILITY IN
THE NUMERICAL SIMULATION OF STOCHASTIC

DIFFERENTIAL EQUATIONS∗
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Abstract. Relatively little is known about the ability of numerical methods for stochastic
differential equations (SDEs) to reproduce almost sure and small-moment stability. Here, we focus
on these stability properties in the limit as the timestep tends to zero. Our analysis is motivated by
an example of an exponentially almost surely stable nonlinear SDE for which the Euler–Maruyama
(EM) method fails to reproduce this behavior for any nonzero timestep. We begin by showing that
EM correctly reproduces almost sure and small-moment exponential stability for sufficiently small
timesteps on scalar linear SDEs. We then generalize our results to multidimensional nonlinear SDEs.
We show that when the SDE obeys a linear growth condition, EM recovers almost surely exponential
stability very well. Under the less restrictive condition that the drift coefficient of the SDE obeys a
one-sided Lipschitz condition, where EM may break down, we show that the backward Euler method
maintains almost surely exponential stability.
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1. Introduction. Stability theory for numerical simulations of stochastic differ-
ential equations (SDEs) typically deals with mean-square behavior. Asymptotic, or
almost sure, stability is at least as relevant in typical applications, but does not benefit
from a well-developed theory. Our general aim here is to address this imbalance.

We begin with a brief overview of relevant work.

A characterization of asymptotic linear stability for a wide class of SDE methods
was given in [10, Lemma 5.1], but this turns out to be of limited use in proving
analytical results. Some properties for weak methods were derived in [10, section 6],
and results for the related T -stability concept can be found in [19]. The issue of
whether the asymptotic linear stability region is bounded was analyzed in [5]. Other
authors [7, 8, 17] have tested asymptotic stability via numerical experiments.

The related concept of pth moment stability for 0 < p ≤ 2 is interesting in
its own right, and in the linear scalar SDE case it is known that as p → 0 this
property is equivalent to asymptotic stability; see Theorem 4.1. We note that some
analysis in [1] on stochastic difference equations is relevant to the application of a
weak Euler–Maruyama (EM) method to a scalar SDE, and further strengthens the
connection between pth moment and asymptotic stability. Similarly, the results in [2]
are relevant to EM on a scalar SDE; in this case the emphasis is on polynomial, rather
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than the generic exponential, rates of convergence. In [4], moment stability for SDEs
with delay is studied in the presence of a suitable Lyapunov function.

Unlike in the mean-square case [10], we are not aware of any numerical methods
that, on a reasonable class of SDEs, have been proved to possess an asymptotic
stability analogue of deterministic A-stability [9]; “problem stable implies numerical
method stable for all stepsizes.”

In this work, we focus on a more fundamental property of the form “problem
stable implies numerical method stable for sufficiently small stepsizes,” where stability
is meant in the exponential asymptotic sense and independently of the size of initial
data. To show that this is a nontrivial issue, we give a nonlinear example in section 3
where, for arbitrarily small timesteps, the basic EM method may fail to preserve
stability. This motivates the subsequent analysis. We find conditions under which
EM does preserve exponential asymptotic stability for small timesteps, and we show
that introducing implicitness, in the form of the backward Euler method, produces
good results on a class of SDEs that includes our motivating example.

More precisely, we prove positive results for scalar-noise SDEs that are linear
(section 4) or satisfy linear growth conditions (section 5). Then in section 6 we show
that backward Euler is successful under a one-sided Lipschitz condition on the drift.
Section 7 shows how the results generalize to multidimensional noise.

2. Notation. Throughout this paper, we let (Ω,F , {Ft}t≥0,P) be a complete
probability space with a filtration {Ft}t≥0 that is increasing and right continuous,
with F0 containing all P-null sets. Let B(t) be a scalar Brownian motion defined on
the probability space. Let | · | denote both the Euclidean norm in R

n and the trace
(or Frobenius) norm in R

n×m. The inner product of x, y in R
n is denoted by 〈x, y〉.

We use a ∨ b to denote max(a, b), a ∧ b to denote min(a, b), and a.s. to mean almost
surely.

We are concerned with the n-dimensional nonlinear Itô SDE

dx(t) = f(x(t))dt + g(x(t))dB(t), t ≥ 0, given 0 	= x(0) ∈ R
n.(2.1)

As a standing hypothesis, we assume that f, g : R
n → R

n are smooth enough for the
SDE (2.1) to have a unique global solution x(t) on [0,∞) (see, for example, [15], for
sufficient conditions). We make two remarks.

• Scalar Brownian motion B(t) is used to make the analysis in sections 5 and 6
more accessible. In section 7 we state how our results extend to the case of
multidimensional noise.

• The restriction to a deterministic initial condition is convenient and does not
lose any generality when asymptotic stability is studied; see, for example, [15,
section 4.2].

The EM method applied to (2.1) produces approximations Xk ≈ x(kΔt), where
X0 = x(0) and

Xk+1 = Xk + Δtf(Xk) + g(Xk)ΔBk.(2.2)

Here Δt > 0 is the timestep and ΔBk := B((k + 1)Δt) − B(kΔt) is the Brownian
increment. We will also consider the more general stochastic theta (ST) method which
takes the form

Xk+1 = Xk + Δt ((1 − θ)f(Xk) + θf(Xk+1)) + g(Xk)ΔBk,(2.3)

where θ ∈ [0, 1] is a fixed parameter. For θ = 0, ST reduces to EM. For θ 	= 0 (2.3)
defines Xk+1 implicitly. We will refer to the θ = 1 case as backward Euler (BE).
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3. Motivating example. For the scalar cubic SDE

dx(t) =
(
x(t) − x(t)3

)
dt + 2x(t)dB(t)(3.1)

it follows from Theorem 6.1 in section 6 below that

lim sup
t→∞

1

t
log |x(t)| ≤ −1 a.s.(3.2)

The EM method (2.2) applied to (3.1) produces

Xk+1 = Xk

(
1 + Δt− ΔtX2

k + 2ΔBk

)
.(3.3)

Lemma 3.1. Suppose 0 < Δt < 1. If |X1| ≥ 24/
√

Δt in (3.3), then

P

(
|Xk| ≥

2k+3

√
Δt

∀ k ≥ 1

)
≥ exp

(
−4e−2/

√
Δt

)
.

Proof. First, we show that

|Xk| ≥
2k+3

√
Δt

and |ΔBk| ≤ 2k ⇒ |Xk+1| ≥
2k+4

√
Δt

.(3.4)

To see this, suppose |Xk| ≥ 2k+3/
√

Δt. Then

|Xk+1| ≥ |Xk|
∣∣Δt|X2

k | − 1 − Δt− 2|ΔBk|
∣∣

≥ 2k+3

√
Δt

∣∣22k+6 − 1 − Δt− 2|ΔBk|
∣∣ .

Hence, |Xk+1| ≥ 2k+4/
√

Δt if

22k+6 − 1 − Δt− 2|ΔBk| ≥ 2;

that is,

2|ΔBk| ≤ 22k+6 − 3 − Δt.

Since 22k+6 − 3 − Δt ≥ 22k+6 − 4 ≥ 2k+1 ∀ k ≥ 0, the implication (3.4) follows.
From (3.4), given that |X1| ≥ 24/

√
Δt, the event that {|Xk| ≥ 2k+3/

√
Δt, ∀ 1 ≤

k ≤ K} contains the event that {|ΔBk| ≤ 2k ∀ 1 ≤ k ≤ K}. So, because the {ΔBk}
are independent,

P

(
|Xk| ≥

2k+3

√
Δt

∀ 1 ≤ k ≤ K

)
≥

K∏
k=1

P
(
|ΔBk| ≤ 2k

)
.(3.5)

Now, because ΔBk ∼ N(0,Δt), we have

P
(
|ΔBk| ≥ 2k

)
= P

(
|ΔBk|√

Δt
≥ 2k√

Δt

)
=

2√
2π

∫ ∞

2k/
√

Δt

e−x2/2 dx

≤ 2√
2π

∫ ∞

2k/
√

Δt

e−x dx

=
2√
2π

exp

(
− 2k√

Δt

)
.
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Hence, in (3.5)

P

(
|Xk| ≥

2k+3

√
Δt

∀ 1 ≤ k ≤ K

)
≥

K∏
k=1

(
1 − exp

(
− 2k√

Δt

))
.

Since

log(1 − u) ≥ −2u for 0 < u <
1

2
,

we then have

log

(
P

(
|Xk| ≥

2k+3

√
Δt

∀ 1 ≤ k ≤ K

))
≥

K∑
k=1

log

(
1 − exp

(
− 2k√

Δt

))

≥ −2
K∑

k=1

exp

(
− 2k√

Δt

)
.(3.6)

Next, using 2k ≥ 2k,

K∑
k=1

exp

(
−2k√

Δt

)
≤

K∑
k=1

exp

(
− 2k√

Δt

)
.

The right-hand side is a geometric series that converges monotonically from below to

e−2/
√

Δt/(1 − e−2/
√

Δt) ≤ 2e−2/
√

Δt. Hence, in (3.6),

log

(
P

(
|Xk| ≥

2k+3

√
Δt

∀ 1 ≤ k ≤ K

))
≥ −4e−2/

√
Δt,

and the result follows.
To interpret Lemma 3.1, we note that given any x(0) 	= 0 and any Δt > 0, there

is a nonzero probability that the first Brownian increment, ΔB1, will cause |X1| ≥
24/

√
Δt. Hence, there is a nonzero probability that EM will produce a numerical

solution that blows up at a geometric rate. This contrasts with the initial-data-
independent exponential stability of the underlying SDE, shown by (3.2).

In sections 4 and 5 we show that this poor behavior cannot happen when EM
is applied to linear scalar problems or an appropriate class of nonlinear SDEs. In
section 6 we study a class of SDEs that includes (3.1) and show that the correct
stability can be retained by moving to an implicit method. We note that in all
results, when we state the existence of a suitable upper limit, Δt�, on the stepsize,
we implicitly mean that Δt� does not depend on the initial data.

4. Linear scalar SDEs. In this section we focus on the linear scalar SDE

dx(t) = αx(t)dt + σx(t)dB(t), with 0 	= x(0) ∈ R,(4.1)

where α and σ are real numbers. The following result is classical; see, e.g., [3, 13, 14].
Theorem 4.1. The sample Lyapunov exponent of the solution to the SDE (4.1)

is

lim
t→∞

1

t
log |x(t)| = α− 1

2
σ2 a.s.,
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and the pth moment Lyapunov exponent is

lim
t→∞

1

t
log E (|x(t)|p) = pα +

1

2
p(p− 1)σ2,

for any p > 0. Hence, the zero solution of the SDE (4.1) is a.s. exponentially stable
if and only if α− 1

2σ
2 < 0, while it is pth moment exponentially stable if and only if

α + 1
2 (p− 1)σ2 < 0.
We hence observe that the zero solution of the SDE (4.1) is a.s. exponentially

stable if and only if it is pth moment exponentially stable for some sufficiently small
positive p.

In the following three subsections we show that for small Δt, EM and ST recover
almost sure and pth moment exponential stability of (4.1).

4.1. Almost sure exponential stability of Euler–Maruyama.
Theorem 4.2. If α − 1

2σ
2 < 0 in (4.1), then for any ε ∈ (0, 1) there is a

Δt� ∈ (0, 1) such that for any Δt < Δt�, the EM approximation has the property that

lim
k→∞

1

kΔt
log |Xk| ≤ (1 − ε)

(
α− 1

2
σ2

)
< 0 a.s.(4.2)

Proof. The EM method (2.2) applied to (4.1) has the form

Xk+1 = Xk(1 + αΔt + σΔBk).(4.3)

It follows that Xk = x0

∏k−1
j=0 (1 + αΔt + σΔBj), and thus

log |Xk| = log |x0| +
k−1∑
j=0

log |1 + αΔt + σΔBj |.

Dividing both sides by k, letting k → ∞, and then applying the classical strong law
of large numbers we obtain

lim
k→∞

1

kΔt
log |Xk| =

1

Δt
E log |1 + αΔt + σ

√
ΔZ| a.s., where Z ∼ N(0, 1).(4.4)

Writing

log |1 + αΔt + σ
√

ΔtZ| = 1
2 log([1 + αΔt + σ

√
ΔtZ]2)

= 1
2 log(1 + 2[αΔt + σ

√
ΔtZ] + [αΔt + σ

√
ΔtZ]2),

and recalling the fundamental inequality

log(1 + u) ≤ u− 1

2
u2 +

1

3
u3, u ≥ −1,

we have

log |1 + αΔt + σ
√

ΔtZ| ≤ 1

2

(
2[αΔt + σ

√
ΔtZ] + [αΔt + σ

√
ΔtZ]2

− 1

2

(
2[αΔt + σ

√
ΔtZ] + [αΔt + σ

√
ΔtZ]2

)2
+

1

3

(
2[αΔt + σ

√
ΔtZ] + [αΔt + σ

√
ΔtZ]2

)3)
.
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Making use of the properties E(Z2n) = (2n−1)!! and E(Z2n−1) = 0, for n = 1, 2, 3, . . . ,
we can compute⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

E[αΔt + σ
√

ΔtZ] = αΔt,

E([αΔt + σ
√

ΔtZ]2) = α2Δt2 + σ2Δt,

E([αΔt + σ
√

ΔtZ]3) = α3Δt3 + 3ασ2Δt2,

E([αΔt + σ
√

ΔtZ]4) = α4Δt4 + 6α2σ2Δt3 + 3σ4Δt2,

E([αΔt + σ
√

ΔtZ]5) = α5Δt5 + 10α3σ2Δt4 + 15ασ4Δt3,

E([αΔt + σ
√

ΔtZ]6) = α6Δt6 + 15α4σ2Δt5 + 45α2σ4Δt4 + 15σ6Δt3,

(4.5)

and hence obtain

E log |1 + αΔt + σ
√

ΔtZ| ≤ (α− 1
2σ

2)Δt + C1Δt2,(4.6)

where C1 = C1(α, σ) > 0 is a constant independent of Δt. Now, choose Δt� ∈ (0, 1)
so small that C1Δt� ≤ ε( 1

2σ
2 − α). Then for any Δt < Δt� we can substitute (4.6)

into (4.4) to obtain (4.2).

4.2. Moment exponential stability of Euler–Maruyama.
Theorem 4.3. Let p ∈ (0, 2]. If α + 1

2 (p − 1)σ2 < 0 in (4.1), then for any
ε ∈ (0, 1) there is a Δt� ∈ (0, 1) such that for any Δt < Δt�, the EM approximation
has the property that

lim
k→∞

1

kΔt
log E(|Xk|p) ≤ (1 − ε)p

(
α +

1

2
(p− 1)σ2

)
< 0.(4.7)

Proof. It follows from (4.3) that E(|Xk|p) = |x0|p
∏k−1

j=0 E(|1 + αΔt + σΔBj |p),
and hence

E(|Xk|p) = |x0|p(E|1 + αΔt + σ
√

ΔZ|p)k, where Z ∼ N(0, 1).

This implies

lim
k→∞

1

kΔt
log E(|Xk|p) =

1

Δt
log E(|1 + αΔt + σ

√
ΔZ|p).(4.8)

Writing

|1 + αΔt + σ
√

ΔtZ|p = ([1 + αΔt + σ
√

ΔtZ]2)p/2

= (1 + 2[αΔt + σ
√

ΔtZ] + [αΔt + σ
√

ΔtZ]2)p/2,

and recalling the fundamental inequality

(1 + u)p/2 ≤ 1 +
p

2
u +

p(p− 2)

8
u2 +

p(p− 2)(p− 4)

23 × 3!
u3, u ≥ −1,(4.9)

we have

|1 + αΔt + σ
√

ΔtZ|p ≤ 1 +
p

2

(
2[αΔt + σ

√
ΔtZ] + [αΔt + σ

√
ΔtZ]2

)
+

p(p− 2)

8

(
2[αΔt + σ

√
ΔtZ] + [αΔt + σ

√
ΔtZ]2

)2

+
p(p− 2)(p− 4)

48

(
2[αΔt + σ

√
ΔtZ] + [αΔt + σ

√
ΔtZ]2

)3

.
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Making use of (4.5), we obtain

E(|1 + αΔt + σ
√

ΔtZ|p) ≤ 1 + p[α + 1
2 (p− 1)σ2]Δt + C3Δt2,

where C3 = C3(α, σ, p) > 0 is a constant independent of Δt. Now, choose Δt� ∈ (0, 1)
so small that for all Δt < Δt�

C3Δt ≤ εp|α + 1
2 (p− 1)σ2| and −1 < (1 − ε)p[α + 1

2 (p− 1)σ2]Δt < 0.

Then

E(|1 + αΔt + σ
√

ΔtZ|p) ≤ 1 + (1 − ε)p[α + 1
2 (p− 1)σ2]Δt.

Substituting this into (4.8) we obtain

lim
k→∞

1

kΔt
log E(|Xk|p) ≤

1

Δt
log

(
1 + (1 − ε)p

[
α +

1

2
(p− 1)σ2

]
Δt

)
.

But log(1 + u) ≤ u for −1 < u < 0, and thus (4.7) follows.

4.3. Exponential stability of the stochastic theta method. If we assume
that Δt is chosen so small that Δtαθ < 1, then the ST method (2.3) applied to the
linear SDE (4.1) may be written in the form

Xk+1 = Xk

(
1 +

α

1 − θαΔt
Δt +

σ

1 − θαΔt
ΔBk

)
.

This approximation coincides with the EM method applied to the modified linear
SDE

dy(t) =
α

1 − θαΔt
y(t)dt +

σ

1 − θαΔt
y(t)dB(t).

Using this observation, it follows almost immediately that the statements of Theorems
4.2 and 4.3 also apply to the ST method.

5. Generalization to multidimensional nonlinear SDEs. To analyze the n-
dimensional nonlinear SDE (2.1), we begin by imposing the linear growth assumption

|f(x)| ∨ |g(x)| ≤ K|x| ∀x ∈ R
n.(5.1)

This implies

f(0) = 0, g(0) = 0,(5.2)

and we will be concerned with pathwise convergence of the solution x(t) of (2.1) to the
zero solution, as t → ∞, and the preservation of this property under discretization.
We also note that condition (5.1) ensures that, with probability one, the solution will
never reach the origin; see, for example, [15, Lemma 3.2].

We begin by giving sufficient conditions for almost sure exponential stability of
the SDE.

Theorem 5.1. Let (5.1) hold. If

−λ := sup
x∈Rn,x 	=0

( 〈x, f(x)〉 + 1
2 |g(x)|2

|x|2 − 〈x, g(x)〉2
|x|4

)
< 0,(5.3)
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then the solution of (2.1) obeys

lim sup
t→∞

1

t
log |x(t)| ≤ −λ a.s.,(5.4)

and given any ε ∈ (0, λ) there exists a p� ∈ (0, 1) such that for all 0 < p < p�

lim sup
t→∞

1

t
log E(|x(t)|p) ≤ −p(λ− ε).(5.5)

Proof. See Appendix A.
Next, we analyze the EM discretization (2.2).
Theorem 5.2. Let (5.1) and (5.3) hold. Then for any ε ∈ (0, λ) there is a

constant Δt� ∈ (0, 1) such that for any 0 < Δt < Δt� the EM approximation (2.2)
satisfies

lim sup
k→∞

1

kΔt
log |Xk| ≤ −(λ− ε) a.s.(5.6)

Further, for any ε ∈ (0, λ) and any sufficiently small p > 0, there is a constant
Δt� ∈ (0, 1) such that for any 0 < Δt < Δt� the EM approximation (2.2) satisfies

lim sup
k→∞

1

kΔt
log E(|Xk|p) ≤ −p(λ− ε).(5.7)

Proof. By condition (5.2), we compute from (2.2) that

|Xk+1|2 = |Xk|2 + 2〈Xk, f(Xk)Δt + g(Xk)ΔBk〉 + |f(Xk)Δt + g(Xk)ΔBk|2

= |Xk|2(1 + ξk),

where

ξk =
1

|Xk|2
[
2〈Xk, f(Xk)Δt + g(Xk)ΔBk〉 + |f(Xk)Δt + g(Xk)ΔBk|2

]
if Xk 	= 0, otherwise it is set to −1. Clearly, ξk ≥ −1. For any p ∈ (0, 1), by inequality
(4.9) we have

|Xk+1|p = |Xk|p(1 + ξk)
p/2

≤ |Xk|p
(

1 +
p

2
ξk +

p(p− 2)

8
ξ2
k +

p(p− 2)(p− 4)

23 × 3!
ξ3
k

)
.

Hence the conditional expectation

E(|Xk+1|p
∣∣∣FkΔt) ≤ |Xk|p E

(
1 +

p

2
ξk +

p(p− 2)

8
ξ2
k +

p(p− 2)(p− 4)

23 × 3!
ξ3
k

∣∣∣FkΔt

)
= |Xk|p1{Xk 	=0}E

(
1 +

p

2
ξk +

p(p− 2)

8
ξ2
k +

p(p− 2)(p− 4)

23 × 3!
ξ3
k

∣∣∣FkΔt

)
,(5.8)

where 1A denotes the indicator function for A. Now,

1{Xk 	=0}E(ξk|FkΔt)

= 1{Xk 	=0}E

(
1

|Xk|2
[
2〈Xk, f(Xk)Δt + g(Xk)ΔBk〉 + |f(Xk)Δt + g(Xk)ΔBk|2

] ∣∣∣FkΔt

)
.
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Since ΔBk is independent of FkΔt, we have E(ΔBk|FkΔt) = E(ΔBk) = 0 and
E((ΔBk)

2|FkΔt) = E((ΔBk)
2) = Δt. It is then easy to obtain that

1{Xk 	=0}E(ξk|FkΔt) = 1{Xk 	=0}

(
1

|Xk|2
[
2〈Xk, f(Xk)Δt〉 + |f(Xk)|2Δt2 + |g(Xk)|2Δt

])
≤ 1{Xk 	=0}

(
1

|Xk|2
[
2〈Xk, f(Xk)Δt〉 + |g(Xk)|2

]
Δt + K2Δt2

)
,(5.9)

where (5.1) has been used. Similarly, we can show that

1{Xk 	=0}E(ξ2
k|FkΔt) ≥

4

|Xk|4
〈Xk, g(Xk)〉2Δt− cKΔt2(5.10)

and

1{Xk 	=0}E(ξ3
k|FkΔt) ≤ cKΔt2,(5.11)

where cK > 0 is a constant dependent only on K. Substituting (5.9), (5.10), and
(5.11) into (5.8) and then using (5.3) and (5.1) we derive that

E(|Xk+1|p
∣∣FkΔt) ≤ |Xk|p1{Xk 	=0}

(
1 +

p

2|Xk|2
[
2〈Xk, f(Xk)Δt〉 + |g(Xk)|2

]
Δt

+
p(p− 2)

2|Xk|4
〈Xk, g(Xk)〉2Δt + CΔt2

)
= |Xk|p1{Xk 	=0}

{
1 + pΔt

( 〈Xk, f(Xk)〉 + 1
2 |g(Xk)|2

|Xk|2
− 〈Xk, g(Xk)〉2

|Xk|4

)
+

p2Δt〈Xk, g(Xk)〉2
2|Xk|4

+ CΔt2
}

≤ |Xk|p
(

1 − pλΔt +
p2ΔtK2

2
+ CΔt2

)
,(5.12)

where C = C(K, p) > 0 is a constant independent of Δt. Now, for any given ε ∈ (0, λ)
and p ∈ (0, 1) sufficiently small for pK2 < ε, choose Δt� ∈ (0, 1) sufficiently small for
pλΔt� < 1 and CΔt� < 1

2pε. It then follows from (5.12) that for any Δt < Δt�

E(|Xk+1|p
∣∣FkΔt) ≤ |Xk|p(1 − p(λ− ε)Δt).

Taking expectations on both sides yields

E(|Xk+1|p) ≤ E(|Xk|p)(1 − p(λ− ε)Δt).

Since this holds for any k ≥ 0, we have

E(|Xk|p) ≤ |x(0)|p(1 − p(λ− ε)Δt)k ≤ |x(0)|pe−pk(λ−ε)Δt ∀k ≥ 1.(5.13)

This implies (5.7). Moreover, we have

P{|Xk|p > k2e−pk(λ−ε)Δt} ≤ |x(0)|p
k2

∀k ≥ 1.

By the Borel–Cantelli lemma, we see that for almost all ω ∈ Ω

|Xk|p ≤ k2e−pk(λ−ε)Δt(5.14)
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holds for all but finitely many k. Hence, there exists a k0(ω), for all ω ∈ Ω excluding
a P-null set, for which (5.14) holds whenever k ≥ k0. Consequently, for almost all
ω ∈ Ω,

1

kΔt
log |Xk| ≤ −(λ− ε) +

2 log(k)

pkΔt

whenever k ≥ k0. Letting k → ∞ we obtain (5.6).

Let us now apply Theorem 5.2 to the linear SDE system

dx(t) = Ax(t)dt + Gx(t)dB(t), t ≥ 0, given 0 	= x(0) ∈ R
n,(5.15)

where A,G ∈ R
n×n. This corresponds to f(x) = Ax and g(x) = Gx in (2.1). Note

1
2λmin(A + AT )|x|2 ≤ 〈x,Ax〉 = 1

2 〈x, (A + AT )x〉 ≤ 1
2λmax(A + AT )|x|2

and

λmin(GTG)|x|2 ≤ 〈x,GTGx〉 = |Gx|2 ≤ ‖G‖2|x|2,

where λmax(·) and λmin(·) denote the maximum and minimum eigenvalues of a sym-
metric matrix, respectively. Moreover,

0 ≤ 〈x,Gx〉2 = 1
4 〈x, (G + GT )x〉2 ≤ 1

4λ
2
max(G + GT )|x|2,

while if G + GT is either nonpositive definite or nonnegative definite,

〈x,Gx〉2 ≥ 1
4

[
|λmax(G + GT )| ∧ |λmin(G + GT )|

]2|x|4.
We hence observe that

〈x,Ax〉 + 1
2 |Gx|2

|x|2 − 〈x,Gx〉2
|x|4 ≥ 1

2λmin(A + AT ) + 1
2λmin(GTG)

− 1
4λ

2
max(G + GT ),

while if G + GT is either nonpositive definite or nonnegative definite,

〈x,Ax〉 + 1
2 |Gx|2

|x|2 − 〈x,Gx〉2
|x|4 ≤ 1

2λmax(A + AT ) + 1
2‖G‖2

− 1
4

[
|λmax(G + GT )| ∧ |λmin(G + GT )|

]2
.

By Theorem 5.2 we reach the following conclusion.

Corollary 5.3. If G+GT is either nonpositive definite or nonnegative definite
and

−λ := 1
2λmax(A + AT ) + 1

2‖G‖2 − 1
4

[
|λmax(G + GT )| ∧ |λmin(G + GT )|

]2
< 0,

then for any ε ∈ (0, λ) there is a pair of constants p ∈ (0, 1) and Δt� ∈ (0, 1) such that
for any Δt < Δt� the EM approximation of the linear SDE (5.15) has the properties
(5.7) and (5.6).
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6. Backward Euler. So far, we have proved positive results about EM for
sufficiently small Δt. However, we saw in section 3 that this behavior does not extend
to the cubic example (3.1). This SDE does not satisfy the linear growth condition
(5.1); thus, of course, the theorems in section 5 do not apply. However, (3.1) does
satisfy (5.3), since

sup
x∈R,x 	=0

( 〈x, f(x)〉 + 1
2 |g(x)|2

|x|2 − 〈x, g(x)〉2
|x|4

)
= sup

x∈R,x 	=0

(
x2 − x4 + 2x2

x2
− 4x4

x4

)
≤ −1,

and we note that the proof of Theorem 5.1 did not use the condition |f(x)| ≤ K|x|
explicitly, though |g(x)| ≤ K|x| was used. Of course, the linear growth condition (5.1)
was used implicitly to guarantee that the solution stays away from the origin with
probability one. However, for this property we need only a weaker condition (see [15,
Lemma 3.2 on p. 120]). Let us form this improved result as a new theorem.

Theorem 6.1. The conclusions of Theorem 5.1 still hold if condition (5.1) is
replaced by the following: for each integer i ≥ 1 there is a Ki > 0 such that

|f(x)| ≤ Ki|x| ∀x ∈ R
n with |x| ≤ i,(6.1)

while there is a K > 0 such that

|g(x)| ≤ K|x| ∀x ∈ R
n.(6.2)

An application of this theorem to the SDE (3.1) shows that its solution obeys (3.2),
as claimed in section 3. We also saw from Lemma 3.1 that EM does not preserve this
almost sure asymptotic stability for any Δt > 0. Hence, it is not possible to extend
Theorem 5.2 to the case where (5.1) is replaced by (6.1) and (6.2).

An interesting open question is whether any other numerical methods preserve
exponential asymptotic stability for small Δt under (6.1) and (6.2).

In this section we pursue a different approach. We consider a structural constraint
that is known to allow positive results to be proved for the BE method in other
contexts. More precisely, we assume that there is a constant μ ∈ R such that

〈x− y, f(x) − f(y)〉 ≤ μ|x− y|2 ∀x, y ∈ R
n.(6.3)

This one-sided Lipschitz condition has been applied in the deterministic and stochastic
literature [9, 11, 12, 16, 20] to establish results about long-term behavior and bound-
edness in a manner that is connected with the use of Lyapunov functions [6, 18]. In
particular, we note that under (6.3) the condition μΔt < 1 ensures that (2.3) with
θ = 1 can be solved uniquely for Xk+1.

The next theorem concerns the exponential stability of BE under conditions (6.3)
and (6.2). Although (6.2) implies g(0) = 0, (6.3) may not force f(0) = 0, and thus
we still need to assume it for the purpose of stability analysis.

Theorem 6.2. Let (6.2) and (6.3) hold and f(0) = 0. Assume also that μ+ 1
2ρ <

0, where

ρ := sup
x∈Rn,x 	=0

( |g(x)|2
|x|2 − 2〈x, g(x)〉2

|x|4
)
.(6.4)

Then (5.4) holds with −λ = μ + 1
2ρ, and for any ε ∈ (0, |μ + 1

2ρ|) there is a pair of
constants p ∈ (0, 1) and Δt� ∈ (0, 1) with μΔt� < 1 such that for any Δt < Δt�, the
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BE method (that is, (2.3) with θ = 1) has the properties that

lim sup
k→∞

1

kΔt
log E(|Xk|p) ≤ p

(
μ +

1

2
ρ + ε

)
< 0(6.5)

and

lim sup
k→∞

1

kΔt
log |Xk| ≤ μ +

1

2
ρ + ε < 0 a.s.(6.6)

Proof. It is straightforward to adapt the proof of Theorem 5.1 in order to establish
(5.4) under (6.2) and (6.3). From (2.3) with θ = 1, we have

|Xk+1|2 = 〈Xk+1, Xk + g(Xk)ΔBk〉 + 〈Xk+1, f(Xk+1)Δt〉.

By (6.3) and f(0) = 0, we have

〈Xk+1, f(Xk+1)Δt〉 ≤ μΔt|Xk+1|2.

But,

〈Xk+1, Xk + g(Xk)ΔBk〉 ≤ 1
2 |Xk+1|2 + 1

2 |Xk + g(Xk)ΔBk|2.

We hence obtain

|Xk+1|2 ≤ 1

1 − 2μΔt
|Xk + g(Xk)ΔBk|2

≤ 1

1 − 2μΔt

(
|Xk|2 + 2〈Xk, g(Xk)〉ΔBk + |g(Xk)|2ΔB2

k

)
=

|Xk|2
1 − 2μΔt

(1 + ζk),

where

ζk =
1

|Xk|2
(
2〈Xk, g(Xk)〉ΔBk + |g(Xk)|2ΔB2

k

)
if Xk 	= 0, otherwise it is set to −1. Clearly, ζk ≥ −1. For any p ∈ (0, 1), by inequality
(4.9) we can then show that

E(|Xk+1|p
∣∣FkΔt) ≤

|Xk|p
(1 − 2μΔt)p/2

1{Xk 	=0}E

(
1 +

p

2
ζk

+
p(p− 2)

8
ζ2
k +

p(p− 2)(p− 4)

23 × 3!
ζ3
k

∣∣∣FkΔt

)
.(6.7)

In the same way as in the proof of Theorem 5.2 we can show that

1{Xk 	=0}E(ζk|FkΔt) = 1{Xk 	=0}
|g(Xk)|2
|Xk|2

Δt,

1{Xk 	=0}E(ζ2
k |FkΔt) ≥

4〈Xk, g(Xk)〉2
|Xk|4

Δt−K4Δt2,
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and

1{Xk 	=0}E(ζ3
k |FkΔt) ≤ cKΔt2,

where cK > 0 is a constant dependent only on K. Substituting the three inequalities
above into (6.7) and then using (6.4) and (6.2) we derive that

E(|Xk+1|p
∣∣FkΔt) ≤

|Xk|p
(1 − 2μΔt)p/2

1{Xk 	=0}

(
1 +

p

2

|g(Xk)|2
|Xk|2

Δt

+
p(p− 2)

8

[
4〈Xk, g(Xk)〉2

|Xk|4
Δt−K4Δt2

]
+

p(p− 2)(p− 4)

23 × 3!
cKΔt2

)
≤ |Xk|p

(1 − 2μΔt)p/2

(
1 +

1

2
pρΔt +

1

2
p2K2Δt + CΔt2

)
,

where C = C(p,K) is a positive constant. Taking expectations on both sides, we
arrive at

E(|Xk+1|p) ≤
1 + 1

2pρΔt + 1
2p

2K2Δt + CΔt2

(1 − 2μΔt)p/2
E(|Xk|p).(6.8)

Now, for any ε ∈ (0, |μ + 1
2ρ|), we may choose p sufficiently small for pK2 ≤ 1

4ε.
Then we have

(1 − 2μΔt)p/2 ≥ 1 − pμΔt− ĈΔt2 > 0,(6.9)

for sufficiently small Δt, where Ĉ = Ĉ(p, μ) is a positive constant. By further reducing
Δt, if necessary, we may ensure that

CΔt < 1
8pε, ĈΔt < 1

4ε, |p(μ + 1
4ε)Δt| ≤ 1

2 .(6.10)

Using (6.9) and (6.10) in (6.8) gives

E(|Xk+1|p) ≤
1 + 1

2p(ρ + 1
2ε)Δt

1 − p(μ + 1
4ε)Δt

E|Xk|p.(6.11)

Note that for any u ∈ [− 1
2 ,

1
2 ]

1

1 − u
= 1 + u + u2

∞∑
i=0

ui ≤ 1 + u + u2
∞∑
i=0

( 1
2 )i = 1 + u + 2u2.

By further reducing Δt, if necessary, so that

4p(μ + 1
4ε)

2Δt + (ρ + 1
2ε)

(
p(μ + 1

4ε)Δt + 2[p(μ + 1
4ε)Δt]2

)
≤ ε,

and using (6.11), we compute that

E(|Xk+1|p) ≤
(
1 + 1

2p(ρ + 1
2ε)Δt

) (
1 + p(μ + 1

4ε)Δt + 2[p(μ + 1
4ε)Δt]2

)
E(|Xk|p)

≤ [1 + p(μ + 1
2ρ + ε)Δt]E(|Xk|p).

From this we can show the assertions (6.5) and (6.6) in the same way as in the proof
of Theorem 5.2.
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Let us return to the scalar SDE (3.1), where f(x) = x − x3 and g(x) = 2x. In
this case, we have 〈x−y, f(x)−f(y)〉 ≤ |x−y|2, so we may take μ = 1 in (6.3), while

ρ := sup
x∈R,x 	=0

(
|g(x)|2
|x|2 − 2〈x, g(x)〉2

|x|4

)
= −4,

whence μ + 1
2ρ = −1, which gives another confirmation of (3.2).

By Theorem 6.2, for any given ε ∈ (0, 1), there is a Δt� > 0 sufficiently small so
that if Δt < Δt�, the BE approximate solution of the SDE (3.1) obeys

lim sup
k→∞

1

kΔt
log |Xk| ≤ −1 + ε a.s.,

which recovers property (3.2) very well indeed.
It is also interesting to observe that in the scalar case (that is, n = 1),

ρ = sup
x∈R,x 	=0

(
−|g(x)|2

|x|2

)
≤ 0.

In this case, if (6.3) also holds with μ < 0, then the BE method is a.s. exponentially
stable as long as the stepsize is sufficiently small. For example, the BE approximate
solution to the scalar SDE

dx(t) = (μx− x3)dt + g(x)dB(t)

is always a.s. exponentially stable as long as the stepsize is sufficiently small, μ < 0,
and g obeys the linear growth condition (6.2). However, in the case μ ≥ 0, we will
need that

|g(x)|2 ≥ ρx2, x ∈ R,

holds for some ρ > 2μ in order to conclude that the BE method is a.s. exponentially
stable.

7. Multidimensional noise. So far, in order to streamline the presentation,
we have only considered scalar noise. In this section we state, without proof, how the
nonlinear results generalize to the multinoise case, as follows:

dx(t) = f(x(t))dt +
d∑

j=1

gj(x(t))dBj(t), t ≥ 0, given 0 	= x(0) ∈ R
n.(7.1)

Here (B1(t), . . . , Bd(t)) is a d-dimensional Brownian motion. As before, we assume,
as a standing hypothesis, that f, g1, . . . , gd : R

n → R
n are smooth enough for the SDE

(7.1) to have a unique global solution x(t) on [0,∞).
The following generalization of Theorem 6.1 gives a criterion for the almost sure

and moment exponential stability of the SDE.
Theorem 7.1. Assume that for each integer i ≥ 1 there is a Ki > 0 such that

|f(x)| ≤ Ki|x| ∀x ∈ R
n with |x| ≤ i,(7.2)

while there is a K > 0 such that

|gj(x)| ≤ K|x| ∀x ∈ R
n and 1 ≤ j ≤ d.(7.3)
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If

−λ := sup
x∈Rn,x 	=0

(
〈x, f(x)〉 + 1

2

∑d
j=1 |gj(x)|2

|x|2 −
∑d

j=1〈x, gj(x)〉2

|x|4

)
< 0,

then the solution of (7.1) obeys

lim sup
t→∞

1

t
log |x(t)| ≤ −λ a.s.,(7.4)

and given any ε ∈ (0, λ) there exists a p� ∈ (0, 1) such that for all 0 < p < p�

lim sup
t→∞

1

t
log E(|x(t)|p) ≤ −p(λ− ε).

This theorem can be proved in a similar way that Theorem 5.1 is proved in the
appendix.

The EM method applied to (7.1) produces approximations Xk ≈ x(kΔt) with
X0 = x(0) and

Xk+1 = Xk + Δtf(Xk) +

d∑
j=1

g(Xk)ΔBjk,(7.5)

where ΔBjk := Bj((k + 1)Δt) − Bj(kΔt). Recalling the motivating example in sec-
tion 3, we will replace the local linear growth condition (7.2) by a global one.

Theorem 7.2. Assume that all the conditions of Theorem 7.1 hold with condition
(7.2) replaced by

|f(x)| ≤ K|x| ∀x ∈ R
n.

Then for any ε ∈ (0, λ) there is a constant Δt� ∈ (0, 1) such that for any 0 < Δt < Δt�

the EM approximation (7.5) satisfies

lim sup
k→∞

1

kΔt
log |Xk| ≤ −(λ− ε) a.s.

Further, for any ε ∈ (0, λ) and any sufficiently small p > 0, there is a constant
Δt� ∈ (0, 1) such that for any 0 < Δt < Δt� the EM approximation (7.5) satisfies

lim sup
k→∞

1

kΔt
log E(|Xk|p) ≤ −p(λ− ε).

The BE method applied to (7.1) produces approximations Xk ≈ x(kΔt) with
X0 = x(0) and

Xk+1 = Xk + Δtf(Xk+1) +

d∑
j=1

gj(Xk)ΔBjk.(7.6)

Theorem 7.3. Let (7.3) and (6.3) hold and f(0) = 0. Assume also that μ+ 1
2ρ <

0, where

ρ := sup
x∈Rn,x 	=0

(∑d
j=1 |gj(x)|2

|x|2 −
2
∑d

j=1〈x, gj(x)〉2

|x|4

)
.
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Then (7.4) holds with −λ = μ + 1
2ρ, and for any ε ∈ (0, |μ + 1

2ρ|) there is a pair of
constants p ∈ (0, 1) and Δt� ∈ (0, 1) with μΔt� < 1 such that for any Δt < Δt�, the
BE method (7.6) has the properties that

lim sup
k→∞

1

kΔt
log E(|Xk|p) ≤ p

(
μ +

1

2
ρ + ε

)
< 0

and

lim sup
k→∞

1

kΔt
log |Xk| ≤ μ +

1

2
ρ + ε < 0 a.s.

Theorems 7.2 and 7.3 can be proved in the same way as the scalar noise versions,
Theorems 5.2 and 6.2.

Appendix A. Proof of Theorem 5.1.
Proof. The result (5.4) may be proved by generalizing the analysis in [15, pp.

121–123], so we give only an outline. By the Itô formula, we can show that

log(|x(t)|2) = log(|x(0)|2) + M(t)

+

∫ t

0

2

( 〈x(s), f(x(s))〉 + 1
2 |g(x(s))|2

|x(s)|2 − 〈x(s), g(x(s))〉2
|x(s)|4

)
ds,

where

M(t) =

∫ t

0

2〈x(s), g(x(s))〉
|x(s)|2 dB(s).

From the condition |g(x)| ≤ K|x|, it is straightforward to show that

lim
t→∞

M(t)

t
= 0 a.s.

Now, if (5.3) holds, then

log(|x(t)|2) ≤ log(|x0|2) + M(t) − 2λt.

Dividing both sides by 2t and then letting t → ∞ we obtain (5.4).
Now we show (5.5). For 0 < p < 1 we have, from the Itô formula,

d (|x(t)|p) = d
((

|x(t)|2
) 1

2p
)

=
p

2

(
|x(t)|2

) 1
2p−1

dx(t)

+
1

2

p

2

(p
2
− 1

) (
|x(t)|2

) 1
2p−2

4〈x(t), g(x(t))〉2 dt

= p|x(t)|p
[ 〈x(t), f(x(t))〉 + 1

2 |g(x(t))|2
|x(t)|2 − 〈x(t), g(x(t))〉2

|x(t)|4

+
p

2

〈x(t), g(x(t))〉2
|x(t)|4

]
dt

+ p|x(t)|p 〈x(t), g(x(t))〉
|x(t)|2 dB(t).(A.1)
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Under (5.1) and (5.3) this implies

d (|x(t)|p) ≤ p|x(t)|p
(
−λ +

p

2
K2

)
dt

+ p|x(t)|p 〈x(t), g(x(t))〉
|x(t)|2 dB(t).

Given ε ∈ (0, λ) we may choose p ∈ (0, 1) so small that pK2/2 < ε, whence

d
(
e(λ−ε)pt|x(t)|p

)
≤ e(λ−ε)pt|x(t)|p

[
(λ− ε)p + p

(
−λ +

1

2
pK2

)]
dt

+ e(λ−ε)ptp|x(t)|p 〈x(t), g(x(t))〉
|x(t)|2 dB(t)

≤ e(λ−ε)ptp|x(t)|p 〈x(t), g(x(t))〉
|x(t)|2 dB(t).

We deduce that

e(λ−ε)pt
E|x(t)|p ≤ E|x(0)|p,

and (5.5) follows.
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