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Abstract

On arbitrary polygonal domains Ω ⊂ R
2, we construct C1 hierar-

chical Riesz bases for Sobolev spaces H s(Ω). In contrast to an earlier
construction by Dahmen, Oswald and Shi ([5]), our bases will be of
Lagrange instead of Hermite type, by which we extend the range of
stability from s ∈ (2, 5

2) to s ∈ (1, 5
2). Since the latter range includes

s = 2, with respect to the present basis, the stiffness matrices of fourth
order elliptic problems are uniformly well-conditioned.
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1 Introduction

This paper deals with the construction of Riesz bases for the Sobolev spaces
Hs(Ω) for s ∈ (1, 5

2
) on arbitrary polygonal domains Ω ⊂ R

2. Because of
the generally non-trivial geometry of Ω, as well as in view of an efficient
implementation, one has to employ multiscale bases. Starting with a nested
sequence of approximation spaces, the idea of such bases is to construct them
recursively by adding to the basis from the previous approximation space a
set of locally supported functions spanning a complement space such that
the union is a basis of the current approximation space. In particular, we
will use hierarchical bases meaning that the functions that are added are just
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a subset of a single-scale basis for the space on the current level. Since such
functions do not have zero mean, the resulting infinite collection may only
yield a basis for Hs(Ω) for positive s.

In case the functions that are added from level to level do have van-
ishing moments, i.e., their integrals against all polynomials up to a certain
degree vanish, we speak about wavelet bases. Several wavelet constructions
on polygonal domains are known that generate Riesz bases for H s(Ω) for s
in a range around zero (see e.g. [6, 8, 15]). With most constructions, at least
a subset of the wavelets are only continuous, so that the range of stability is
restricted to s < 3

2
. In particular, the only available wavelet type Riesz basis

for Hs(Ω) and s > 3
2

on general polygons is that of [7], which is based on
domain decomposition and employs a Hestenes extension operator.

Hierarchical bases were constructed first in [24], based on C0 finite ele-
ments. For domains in R

2 they give rise to Riesz bases for Hs(Ω), s ∈ (1, 3
2
),

with a suboptimal result (leading to logarithmically growing condition num-
bers of related stiffness matrices) in the case s = 1 most interesting for
practice. For s ≥ 3

2
, C1 piecewise polynomials can be used as shown in [22]

and [5], where hierarchical bases are constructed that are Riesz bases for
s ∈ (2, 5

2
). In [12] these bases are employed for surface compression. Instead

of the classical Hermite type finite element bases used in [5, 12, 22], in this
paper we employ single scale bases of Lagrange type, which allows us to en-
large the range of stability of the resulting hierarchical basis to s ∈ (1, 5

2
),

which thus safely includes the value s = 2 important for the application to
solving the biharmonic equation.

The approximation spaces used in our construction are the spaces of C1

piecewise cubic polynomials on certain special triangulations (see Section 2
for their description) which are available for any polygonal domain, as shown
in Appendix A. On domains that allow a conforming quadrangulation with
all interior vertices of degree four, these triangulations are the standard trian-
gulated quadrangulations (so called FVS triangulations) associated with the
well known Fraeijs de Veubeke-Sander quadrilateral C1 cubic finite elements.
Recently, locally supported Lagrange bases for the spaces of C1 piecewise
cubic polynomials on FVS triangulations have appeared in [18, 19, 20].

An important property of FVS triangulations is that they can be regularly
refined leading to a nested sequence of approximation spaces, see e.g. [5,
13]. Although the single scale Lagrange bases corresponding to each level of
refinement are not stable with respect to the metric of H s(Ω), s > 0, they can
be employed to construct hierarchical Riesz bases for Sobolev spaces if they
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are L2-stable and if the Lagrange interpolation sets of consecutive refinement
levels are nested. To ensure this last property we restrict ourselves to the
so called checkerboard triangulations [18], and replace the standard dyadic
refinement with a triadic one. Since many important domains (e.g. a triangle)
do not allow a checkerboard triangulation, we use a slightly wider class of
triangulations which can be employed on any polygon, and at the same time
results in nested spaces.

The starting point for our construction in this paper is the Lagrange ba-
sis for C1 piecewise cubics mentioned in [9, Remark 2.5], which is related
to the Bernstein-Bèzier basis used in [9] to define a scattered data fitting
method. However, as we will see, aiming at constructing hierarchical La-
grange bases we have to modify the construction from [9]. The technically
most difficult part is to find correct constellations of the interpolation points
near the domain boundary preserving all required properties such as locality
and stability of the basis functions and nesting of the interpolation sets.

The paper is organized as follows.
In Section 2, the nested sequence of C1 piecewise cubic approximation

spaces is defined with respect to increasingly finer subdivisions by triadic
refinements of the two-dimensional domain into quadrilaterals generally aug-
mented by triangles at the boundary. Precise conditions on the initial sub-
division are formulated, which, as in shown in Appendix A, can be fulfilled
for any polygon.

In Section 3, after deriving some auxiliary results concerning the stability
of local interpolation problems, we give a formula for the dimension of the
approximation spaces.

In Section 4, locally supported, single scale Lagrange bases are con-
structed, and their uniform L2-stability is proven.

Finally, in Sections 5 and 6, the theory of multiscale decompositions is
applied to show that the above Lagrange bases give rise to a hierarchical
basis which, properly scaled, yields a Riesz basis for H s(Ω), 1 < s < 5

2
.

In order to avoid the repeated use of generic but unspecified constants,
in this paper by C <

∼ D we mean that C can be bounded by a multiple of D,
independently of parameters which C and D may depend on. Furthermore,
C >

∼ D is defined as D <
∼ C, and C h D as “C <

∼ D and C >
∼ D.”
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2 Multilevel spaces of C1 piecewise cubics

Let Ω ⊂ R
2 be a domain for which there is a collection ♦0 of (closed) convex

nondegenerate quadrilaterals such that

(a) Ω ⊂ ∪Q∈♦0
Q,

(b) The intersection of any two different quadrilaterals from ♦0 is either
empty or a common edge or vertex.

(c) – All interior vertices are of degree four,

– the edges of all quadrilaterals can be given predicates north, east,
south, and west in clockwise direction such that different quadri-
laterals may only share north-south or east-west edges, and

– ♦0 allows a splitting into disjoint subsets ♦•
0 and ♦◦

0 of black and
white quadrilaterals such that each quadrilateral shares its edges
only with quadrilaterals of opposite color.

(d) Each Q ∈ ♦0 has non-empty intersection with Ω, and if int(Q) 6⊂ Ω,
then one of the diagonals of Q is on ∂Ω. We set

∂♦0 = {Q ∈ ♦0 : int(Q) 6⊂ Ω}.

In addition, we assume that one of both triangles defined by cutting
Q ∈ ∂♦0 along ∂Ω is inside Ω and the other one is outside Ω.

(e) Different Q, Q′ ∈ ∂♦0 do not share an edge.

Note that Ω has a polygonal boundary. An illustration is given in Figure 1.

At a first glance the assumptions (a)–(e) may look very restrictive. How-
ever, as we will show in Appendix A, a quadrangulation of this type can
be constructed for any domain with Lipschitz’ continuous, piecewise linear
boundary (also non-convex and multiply connected).

Remark 2.1. Allowing multiply connected domains, none of the conditions
in (c) is implied by two others.

Remark 2.2. The conditions (a)–(c) are very similar to those imposed in
[18] on what is called there being a checkerboard quadrangulation, except
that no triangles at the boundary are allowed there, i.e., ∂♦0 = ∅. The
possible presence of triangles at the boundary will rather complicate our
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Figure 1: Polygonal domain and a quadrangulation ♦0.

task of constructing a suitable hierarchical basis. On the other hand, they
allow us to treat general polygons. Indeed, a simple argument involving the
degrees of the boundary vertices shows that without allowing triangles at the
boundary, a quadrangulation satisfying (a)–(c) of e.g. any triangular domain
does not exist.

Let △0 be the triangulation of Ω obtained by adding both diagonals to
each quadrilateral Q ∈ ♦0, as in [18], and by removing all the resulting
triangles not lying in Ω (cf. Figure 7).

Remark 2.3. Although (a)–(e) do permit quadrangulations of domains having
cracks, for those domains some conditions are unnecessarily restrictive. All
restrictions induced by (a)–(e) on relations between triangles from △0 on
both sides of a crack are actually irrelevant. For example, it does not matter
when such triangles have partly overlapping edges. Although, for ease of
presentation, we assumed that one of both triangles defined by cutting Q ∈
∂♦0 along ∂Ω is inside Ω and the other one is outside Ω, one may keep in
mind that the latter triangle is actually a virtual one since it does not belong
to the triangulation △0 which will be used to define the spaces of piecewise
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cubics. So in particular it does not matter that for domains with cracks it
cannot always be avoided that such virtual triangles do intersect with Ω.

By subdividing each quadrilateral in ♦0 into 9 subquadrilaterals as indi-
cated in Figure 2, we arrive at a refined quadrangulation ♦1. As ♦0 gave
rise to △0, ♦1 gives rise to a triangulation △1, which is a refinement of △0.
The coloring of the quadrilaterals from ♦0 and the labeling of their edges
induces a coloring and labeling for quadrilaterals from ♦1 as is also indicated
in Figure 2.

n n nn

Figure 2: Refinement of a quadrilateral, and the induced coloring and edge
labeling of the new quadrilaterals.

Repeating this process, we get a sequence of successively refined quad-
rangulations

♦0,♦1, . . . ,♦n, . . . ,

and triangulations
△0,△1, . . . ,△n, . . . .

All quadrangulations ♦n satisfy the properties (a)–(e) that were listed for ♦0.
As for n = 0 above, we denote by ∂♦n the subset of ♦n of those quadrilaterals
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Q ∈ ♦n having interiors that are not completely contained in Ω, and by ♦•
n

and ♦◦
n we denote the sets of black and white quadrilaterals in ♦n.

Similar to [5, Proposition 5.2], it can be verified that each quadrilateral
from ♦2 is either a parallelogram or geometrically similar to a quadrilat-
eral from ♦1. As a consequence, all quadrilaterals generated in subsequent
subdivisions are similar to quadrilaterals in ♦1 or ♦2, and so we infer that
the smallest angle of any triangle in all triangulations △n, n = 0, 1, . . ., is
bounded from below by some positive constant

θ.

In order not to be forced to handle many exceptional cases in §4, in
addition to (a)-(e), we assume that all ♦n satisfy the following condition:

(f) – No Q ∈ ♦n\∂♦n shares two opposite edges with quadrilaterals in
∂♦n.

– If v /∈ ∂Ω is a vertex of Q ∈ ∂♦n, then v is shared by three
quadrilaterals in ♦n\∂♦n, with one of them having no common
edges with quadrilaterals in ∂♦n.

One easily verifies that if ♦0 satisfies (a)–(f), then all ♦n satisfy (a)–(f).
Moreover, in particular because of (e), if ♦0 satisfies (a)–(e), then ♦1, and
thus ♦n for all n ≥ 1 satisfy (a)–(f). So possibly by replacing the initial
quadrangulation ♦0 by ♦1 we may always assume that (f) is valid. Note
that in practice (f) can be achieved using a much more moderate refinement
of ♦0. In particular, a dyadic refinement always suffices.

For each n = 0, 1, . . ., we consider the space Sn of cubic piecewise polyno-
mials with respect to △n satisfying the homogeneous boundary conditions,
i.e.,

Sn = {s ∈ C1(Ω) : s|T ∈ P3 for all T ∈ △n, and s = ∂s
∂x

= ∂s
∂y

= 0 on ∂Ω},

where P3 is the space of all bivariate polynomials of total degree at most 3.
It is clear that the spaces Sn are nested, i.e.,

S0 ⊂ S1 ⊂ · · · ⊂ Sn ⊂ · · · . (2.1)
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3 Dimension of Sn

As a preparation for the construction of a basis, we compute the dimension
of Sn. We start with three lemmas that will also be used in the next section.
Note that we use nodal smoothness conditions (see e.g. [10, 17]) in the proofs
although the Bernstein-Bèzier techniques employed in [18]–[20] and [9] could
have been applied with equal success. In the figures below we employ usual
symbols (dots, circles and arrows) to indicate nodal degrees of freedom (see
[2]).

An important tool repeatedly used in this section is the classical Markov
inequality

‖p′‖L∞(0,1) ≤ 2q2‖p‖L∞(0,1)

valid for any univariate polynomial p of degree q. We often apply this inequal-
ity in the following form: Let e be a line segment in R

2 with endpoints v and
w, and let s be a bivariate polynomial of total degree q. With ∂s

∂e
(v) we denote

the derivative of s at v in the direction w−v. Defining p(t) = s(v+t(w−v)),

we have ∂s
∂e

(v) = p′(0)
|e|

, and Markov’s inequality shows that

|∂s
∂e

(v)| ≤ 2q2

|e|
‖s‖L∞(e).

Lemma 3.1. Let T be a triangle with vertices v1, v2, v3, see Figure 3. Denote
by w the midpoint of the edge e connecting v2 and v3, and by h the diameter
of T . Then for every cubic polynomial s ∈ P3 we have

‖s‖L∞(T )
<
∼ max

{

|s(vi)|, h
∣

∣

∣

∂s
∂x

(vi)
∣

∣

∣
, h

∣

∣

∣

∂s
∂y

(vi)
∣

∣

∣
, 1 ≤ i ≤ 3, h

∣

∣

∣

∂s
∂e⊥

(w)
∣

∣

∣

}

, (3.1)

with a constant depending only on the smallest angle in T . Moreover, for
any a ∈ R

10 there exists a unique s ∈ P3 such that the ten functionals that
determine the right hand side of (3.1) have the values a1 to a10.

Proof. Without loss of generality we may assume that v1 is located at the
origin of the coordinate system. Moreover, a simple scaling argument shows
that it is sufficient to prove (3.1) for triangles T with diameter h = 1 and
polynomials s ∈ P3 with ‖s‖L∞(T ) = 1. For any fixed γ > 0, the set of all such
triangle/polynomial pairs (each identified with a point in R

14 representing
the four coordinates of v2, v3 and ten coefficients of s with respect to a fixed
polynomial basis), such that the minimal angle of the triangle is at least
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Figure 3: Triangle T , and degrees of freedom corresponding to Lemma 3.1.

γ, is compact. Therefore, the right hand side of (3.1) (with h = 1), as a
continuous function on this compact set, attains its minimum value µ for a
triangle T and a polynomial s. If µ > 0, then its reciprocal is the desired
constant in (3.1). Since µ is obviously nonnegative, it remains to show that
µ cannot be zero.

Let us assume that µ = 0. Then all values

s(vi),
∂s
∂x

(vi),
∂s
∂y

(vi), 1 ≤ i ≤ 3, ∂s
∂e⊥

(w) (3.2)

are zero. Because of its vanishing function value and first order derivative
at both endpoints, the univariate cubic polynomial s|e is zero. Because of
its vanishing function value at both endpoints and at the midpoint, also the
univariate quadratic polynomial ∂s

∂e⊥
|e is zero. Now let z 6= v1 be any point

in T , and let ℓ be the straight line through z and v1. Since both its function
value and first order derivative vanish at both v1 and at the intersection point
of ℓ and e, the univariate cubic polynomial s|ℓ is zero, and so s(z) = 0, or
s = 0, in contradiction to the assumption ‖s‖L∞(T ) = 1.

This last argument also shows that the ten nodal functionals from (3.2)
span (P3)

∗. (As usual, we denote by X∗ the dual space of a linear space X.)
Since dim(P3) = 10, they do not only span (P3)

∗, but necessarily generate a
basis for it, which proves the last statement of the lemma.

Lemma 3.2. Let T1, T2 be two triangles with vertices v, v1, v2 and v, v2, v3,
respectively, see Figure 4. With α1, α2 being the angles of T1, T2 at v2, we
assume that α1 +α2 6= π. Let w1 and w2 be the midpoints of the edges [v1, v2]
and [v2, v3], respectively. We denote by h the diameter of T1 ∪ T2, and by e
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Figure 4: Illustration to Lemma 3.2.

the edge T1 ∩ T2. Then for any C1 cubic piecewise polynomial s with respect
to the pair of triangles T1, T2 we have

‖s|e‖L∞(e)
<
∼ max

{

|s(vi)|, h
∣

∣

∣

∂s
∂x

(vi)
∣

∣

∣
, h

∣

∣

∣

∂s
∂y

(vi)
∣

∣

∣
, i = 1, 2, 3,

h
∣

∣

∣

∂s
∂e⊥i

(wi)
∣

∣

∣
, i = 1, 2, |s(v)|

}

,
(3.3)

with a constant depending only on the smallest angle γ from T1, T2 and on
|π − (α1 + α2)|. If [v1, v] ∪ [v, v3] is a straight line, then π − (α1 + α2) has a
positive lower bound in terms of the smallest angle from T1 and T2, and the
constant in (3.3) depends only on γ.

Proof. Let e1 = [v2, v1], e2 = [v2, v3] and e = [v2, v]. Since a univariate cubic
polynomial is uniquely determined by its function and first derivative values
at the endpoints of an interval, we have

‖s|ei
‖L∞(ei)

<
∼ max

{

|s(vj)|, h
∣

∣

∣

∂s
∂x

(vj)
∣

∣

∣
, h

∣

∣

∣

∂s
∂y

(vj)
∣

∣

∣
, j = i, i + 1

}

, i = 1, 2.

Similarly, since a univariate quadratic polynomial is uniquely determined by
its values at the endpoints and at the middle point of an interval, it follows
that

‖ ∂s
∂e⊥i

|ei
‖L∞(ei)

<
∼ max

{
∣

∣

∣

∂s
∂x

(vj)
∣

∣

∣
,
∣

∣

∣

∂s
∂y

(vj)
∣

∣

∣
, j = i, i + 1,

∣

∣

∣

∂s
∂e⊥i

(wi)
∣

∣

∣

}

, i = 1, 2.
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Since

∂2

∂e∂ei
(s|Ti

)(v2) = ∂
∂ei

(

cos αi
∂

∂ei
(s|Ti

) ± sin αi
∂

∂e⊥
i

(s|Ti
)
)

(v2)

= cos αi
∂2

∂e2

i

(s|Ti
)(v2) ± sin αi

∂2

∂ei∂e⊥i
(s|Ti

)(v2)

(where the choice of “+” or “−” depends on the orientation of e⊥i and has no
influence on our argumentation), we conclude by Markov’s inequality that

h2
∣

∣

∣

∂2

∂e∂ei
(s|Ti

)(v2)
∣

∣

∣

<
∼ M, i = 1, 2,

with

M := max
{

|s(vi)|, h
∣

∣

∣

∂s
∂x

(vi)
∣

∣

∣
, h

∣

∣

∣

∂s
∂y

(vi)
∣

∣

∣
, i = 1, 2, 3, h

∣

∣

∣

∂s
∂e⊥i

(wi)
∣

∣

∣
, i = 1, 2

}

.

Now, since s is C1 across the edge e, we have by a nodal smoothness
condition [17, formula (II)],

∂2

∂e2 (s|e)(v2) sin(α1 + α2) = ∂2

∂e∂e1

(s|T1
)(v2) sin α2 + ∂2

∂e∂e2

(s|T2
)(v2) sin α1,

which implies

h2
∣

∣

∣

∂2

∂e2 (s|e)(v2)
∣

∣

∣

<
∼ M/|π − (α1 + α2)|.

Taking into account also the inequality

∣

∣

∣

∂s
∂e

(v2)
∣

∣

∣

<
∼ max

{
∣

∣

∣

∂s
∂x

(v2)
∣

∣

∣
,
∣

∣

∣

∂s
∂y

(v2)
∣

∣

∣

}

and the fact that a univariate cubic polynomial is uniquely determined by its
function values at the endpoints of an interval and first and second derivatives
at one endpoint, we arrive at the estimate

‖s|e‖L∞(e)
<
∼ max

{

|s(v2)|, h
∣

∣

∣

∂s
∂e

(v2)
∣

∣

∣
, h2

∣

∣

∣

∂2

∂e2 (s|e)(v2)
∣

∣

∣
, |s(v)|

}

<
∼ max

{

|s(v)|, M/|π − (α1 + α2)|
}

,

which completes the proof of (3.3).
The final statement of the lemma is obvious. Note that in our applications

of this lemma, [v1, v] ∪ [v, v3] will always be a straight line.
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Figure 5: Quadrilateral Q of Lemma 3.3.

Lemma 3.3. Let Q be a convex nondegenerate quadrilateral with vertices
v1, . . . , v4 numbered in counterclockwise direction, and edges e1 = [v1, v2],
e2 = [v2, v3], e3 = [v3, v4] and e4 = [v4, v1], see Figure 5. We denote by wi the
midpoint of ei and by v the intersection point of the diagonals of Q, and set
w̃ = 2

3
v+ 1

3
v1 and ēi = [vi, v]. Let △Q denote the triangulation of Q into four

triangles T1, . . . , T4 obtained by splitting Q along both its diagonals, where ei

is an edge of Ti, and denote by h the diameter of Q. Then for any C1 cubic
piecewise polynomial s with respect to △Q, we have

‖s‖L∞(Q)
<
∼ max

{

|s(vi)|, h
∣

∣

∣

∂s
∂x

(vi)
∣

∣

∣
, h

∣

∣

∣

∂s
∂y

(vi)
∣

∣

∣
, h

∣

∣

∣

∂s
∂e⊥i

(wi)
∣

∣

∣
, 1 ≤ i ≤ 4

}

, (3.4)

‖s‖L∞(Q)
<
∼ max

{

|s(vi)|, h
∣

∣

∣

∂s
∂x

(vi)
∣

∣

∣
, h

∣

∣

∣

∂s
∂y

(vi)
∣

∣

∣
, i = 1, . . . , 4,

h
∣

∣

∣

∂s
∂e⊥

i

(wi)
∣

∣

∣
, i = 1, 2, |s(v)|, |s(w̃)|

}

,
(3.5)

‖s‖L∞(Q)
<
∼ max

{

|s(vi)|, h
∣

∣

∣

∂s
∂x

(vi)
∣

∣

∣
, h

∣

∣

∣

∂s
∂y

(vi)
∣

∣

∣
, i = 1, . . . , 4,

h
∣

∣

∣

∂s
∂e⊥i

(wi)
∣

∣

∣
, i = 1, 2, 3, |s(v)|

}

,
(3.6)

and

‖s‖L∞(Q)
<
∼ max

{

|s(vi)|, h
∣

∣

∣

∂s
∂x

(vi)
∣

∣

∣
, h

∣

∣

∣

∂s
∂y

(vi)
∣

∣

∣
, i = 1, . . . , 4,

h
∣

∣

∣

∂s
∂e⊥

i

(wi)
∣

∣

∣
, i = 1, 3, |s(v)|, |s(w̃)|

}

,
(3.7)
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Figure 6: Degrees of freedom corresponding to (3.4), (3.5), (3.6) and (3.7).

with constants depending only on the smallest angle in △Q, cf. Figure 6
Moreover, for any a ∈ R

16, there exists a unique C1 cubic piecewise polyno-
mial with respect to △Q such that the sixteen functionals that determine the
right hand side of either (3.4), (3.5), (3.6) or (3.7) have the values a1 to a16.

Proof. The estimate (3.4) together with the last statement for this set of
functionals follows immediately from the standard theory of the Fraeijs de
Veubeke-Sander finite element (see, e.g. [2]).

To show (3.5), we first apply Lemma 3.2 to the triangles T1, T2, which
shows that

‖s|ē2
‖L∞(ē2)

<
∼ M,

where M is the right hand side of (3.5). From this we find

h
∣

∣

∣

∂s
∂ē2

(v)
∣

∣

∣

<
∼ M.

In addition, by considering a univariate cubic polynomial obtained by re-
stricting s to the edge ē1, we conclude that

h
∣

∣

∣

∂s
∂ē1

(v)
∣

∣

∣

<
∼ max

{

|s(v1)|, h
∣

∣

∣

∂s
∂ē1

(v1)
∣

∣

∣
, |s(w̃)|, |s(v)|

}

<
∼ M.

Therefore,

max
{

h
∣

∣

∣

∂s
∂x

(v)
∣

∣

∣
, h

∣

∣

∣

∂s
∂y

(v)
∣

∣

∣

}

<
∼ M, (3.8)

and Lemma 3.1 shows that ‖s‖L∞(T1∪T2)
<
∼ M . In particular, the univariate

cubic polynomials obtained by restricting s to the intervals ē1, [w1,
1
2
v+ 1

2
v1],

ē3 and [w2,
1
2
v+ 1

2
v3] are bounded by M multiplied with a constant depending

only on the smallest angle in △Q. By Markov’s inequality it then follows that

max
{

h
∣

∣

∣

∂s
∂ē⊥

1

(1
2
v + 1

2
v1)

∣

∣

∣
, h

∣

∣

∣

∂s
∂ē⊥

3

(1
2
v + 1

2
v3)

∣

∣

∣

}

<
∼ M,
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which allows to apply Lemma 3.1 also to T3, T4 completing the proof of (3.5).
The proof of (3.6) is quite similar to the above proof of (3.5), where the

only difference is that (3.8), with M now being the right hand side of (3.6),
is obtained by applying Lemma 3.2 twice, namely to the pairs of triangles
T1, T2 and T2, T3.

Next, we prove (3.7). By a well-known interpolation scheme for univariate
cubic polynomials,

‖s|ē1
‖L∞(ē1)

<
∼ max

{

|s(v1)|, h
∣

∣

∣

∂s
∂ē1

(v1)
∣

∣

∣
, |s(v)|, |s(w̃)|

}

<
∼ M, (3.9)

where M denotes the right hand side of (3.7) this time. Furthermore, as in
the beginning of the proof of Lemma 3.2, we get

h2
∣

∣

∣

∂2

∂ē1∂e1
(s|T1

)(v1)
∣

∣

∣

<
∼ max

{

|s(vi)|, h
∣

∣

∣

∂s
∂x

(vi)
∣

∣

∣
, h

∣

∣

∣

∂s
∂y

(vi)
∣

∣

∣
, i = 1, 2, h

∣

∣

∣

∂s
∂e⊥

1

(w1)
∣

∣

∣

}

<
∼ M.

Using the C1-smoothness across ē1, we have

∂2

∂ē1∂e4

(s|T4
)(v1) sin α1 = ∂2

∂ē1∂e1

(s|T1
)(v1) sin α2 −

∂2

∂ē2

1

(s|ē1
)(v1) sin(α1 + α2),

where α1, α2 are the angles of T1, respectively T4, at v1. Since also

‖s|e4
‖L∞(e4)

<
∼ max

{

|s(vi)|, h
∣

∣

∣

∂s
∂x

(vi)
∣

∣

∣
, h

∣

∣

∣

∂s
∂y

(vi)
∣

∣

∣
, i = 1, 4

}

,

it follows that

h2
∣

∣

∣

∂2

∂e4∂e⊥
4

(s|T4
)(v1)

∣

∣

∣
= h2

∣

∣

∣

∂2

∂ē1∂e4
(s|T4

)(v1) + ∂2

∂e2

4

(s|T4
)(v1) cos α2

∣

∣

∣
/ sin α2

<
∼ M.

By a univariate quadratic interpolation scheme, we get

‖ ∂s
∂e⊥

4

|e4
‖L∞(e4)

<
∼ max

{∣

∣

∣

∂s
∂x

(vi)
∣

∣

∣
,
∣

∣

∣

∂s
∂y

(vi)
∣

∣

∣
, i = 1, 4, h

∣

∣

∣

∂2

∂e4∂e⊥
4

(s|T4
)(v1)

∣

∣

∣

}

,

which implies, in particular,

h
∣

∣

∣

∂s
∂e⊥

4

(w4)
∣

∣

∣

<
∼ M.

Now, by Lemma 3.2 applied to T3, T4, we have ‖s|ē4
‖L∞(ē4)

<
∼ M, which,

together with (3.9) implies

max
{

h
∣

∣

∣

∂s
∂x

(v)
∣

∣

∣
, h

∣

∣

∣

∂s
∂y

(v)
∣

∣

∣

}

<
∼ M.
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Therefore, by Lemma 3.1, we obtain ‖s‖L∞(T1∪T3∪T4)
<
∼ M . After estimating

the normal derivative of s at, say, the midpoint of ē2, we apply Lemma 3.1
on T2 and thereby complete the proof of (3.7).

The final statement of the lemma follows immediately from the estimates
(3.4)–(3.7) and the well-known fact that the space of all C1 cubic piecewise
polynomials with respect to △Q has dimension 16.

Proceeding to the computation of the dimension of Sn, we say that an
interior edge of ♦n is strictly interior if it is also interior with respect to
♦n \ ∂♦n, and denote by E si

n the set of all such edges. Furthermore, we
denote by V i

n the set of all interior vertices of ♦n.

Theorem 3.4. The dimension of Sn is given by the formula

dimSn = 3#V i
n + #E si

n . (3.10)

Proof. We denote by we the midpoint of an edge e of △n. It suffices to show
that the linear functionals

s(v), ∂s
∂x

(v), ∂s
∂y

(v), v ∈ V i
n,

∂s
∂e⊥

(we), e ∈ E si
n ,

(3.11)

(s ∈ Sn) form a basis for the dual space S∗
n. (Indeed, the number of func-

tionals in (3.11) is exactly the number in the right hand side of (3.10).)
To this end, we first show that the functionals (3.11) span S∗

n. This will
follow if for any s ∈ Sn,

s(v) = ∂s
∂x

(v) = ∂s
∂y

(v) = 0, v ∈ V i
n, ∂s

∂e⊥
(we) = 0, e ∈ E si

n ,

implies s = 0. By Lemma 3.1, the above assumptions imply that s|Q∩Ω = 0
for any Q ∈ ∂♦n since the vertex v of Q which belongs to Ω is in V i

n, and
the function and first derivatives of s on the edge Q ∩ ∂Ω are zero because
of the boundary conditions. Let now Q ∈ ♦n \ ∂♦n. Then the function
and derivative values of s|Q listed in (3.4) of Lemma 3.3 are all zero, either
by the above assumption (for interior vertices and strictly interior edges),
or by boundary conditions (for boundary vertices and edges), or due to the
fact that s|Q′∩Ω = 0 for each Q′ ∈ ∂♦n sharing an edge with Q. Therefore,
s|Q = 0 by Lemma 3.3.

15



It remains to show that the functionals (3.11) are linearly independent,
or, equivalently, for any real av, a

x
v , a

y
v, v ∈ V i

n, and ae, e ∈ E si
n , there exists

an s ∈ Sn such that

s(v) = av,
∂s
∂x

(v) = ax
v ,

∂s
∂y

(v) = ay
v, v ∈ V i

n,
∂s

∂e⊥
(we) = ae, e ∈ E si

n .

We start by constructing s|Q∩Ω for each Q ∈ ∂♦n. Denote by T1, T2 the

two triangles of △n that make up Q ∩ Ω, by e their common edge, by eb

the diagonal of Q which is on ∂Ω, by vb the vertex of e that is on both
diagonals of Q, and by v the other vertex of e. We determine p1 = s|T1

and
p2 = s|T2

by using the interpolation scheme of Lemma 3.1, where v plays
the role of v1. To check that the two bivariate cubic polynomials p1, p2 join
with a C1 smoothness across e, we first observe that p1(v

b) = p2(v
b) = 0,

∂p1

∂e
(vb) = ∂p2

∂e
(vb) = 0 and p1(v) = p2(v), ∂p1

∂e
(v) = ∂p2

∂e
(v). This implies

that univariate cubic polynomials p1|e and p2|e coincide. The C1-smoothness
will follow if we in addition show that ∂p1

∂ν
|e and ∂p2

∂ν
|e also coincide, for some

direction ν non-collinear with e. We choose the direction of the edge eb and
notice that ∂p1

∂eb (vb) = ∂p2

∂eb (vb) = 0 and ∂p1

∂eb (v) = ∂p2

∂eb (v). Moreover, since
∂p1

∂e
|eb∩T1

= 0 and ∂p2

∂e
|eb∩T2

= 0, it follows that ∂2p1

∂eb∂e
(vb) = ∂2p2

∂eb∂e
(vb) = 0.

Thus, the univariate quadratic polynomials p̃1(t) := ∂p1

∂eb (tv + (1 − t)vb) and

p̃2(t) := ∂p2

∂eb (tv +(1− t)vb), t ∈ [0, 1], satisfy p̃1(0) = p̃2(0) = p̃′1(0) = p̃′2(0) =

0, p̃1(1) = p̃2(1) and, hence, coincide, i.e., ∂p1

∂eb |e = ∂p2

∂eb |e.
Let now Q ∈ ♦n \ ∂♦n. We construct s|Q by using (3.4) of Lemma 3.3,

where the required function and derivative values on the boundary of Q are
given as av, a

x
v , a

y
v for a vertex v ∈ V i

n, as ae for an edge e ∈ E si
n , as zeros for

the vertices and edges on the boundary of Ω. For any edge e that Q shares
with a Q′ ∈ ∂♦n, the missing normal derivative at the midpoints we of e is

computed as
∂s|Q
∂e⊥

(we) =
∂s|Q′

∂e⊥
(we). Lemma 3.3 now guarantees that s|Q is

C1-smooth across the diagonals of Q.
Finally, the C1-smoothness of s across any interior edge e of ♦n follows

from the fact that by Condition (e), at least one of both quadrangles at both
sides of e is in ♦n \∂♦n, and so by construction the two polynomial pieces of
s on both triangles attached to e have identical function and first derivative
values at the vertices of e, and identical normal derivatives at we.
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4 Stable local Lagrange bases

The dual basis from the proof of Theorem 3.4 provides a local Hermite-type
basis for the space Sn. In this section we construct a Lagrange basis for the
same space, with certain properties required to achieve our goals.

Given Q ∈ ♦•
n with western subtriangle TQ inside Ω, i.e., TQ ∈ △n, let

v1, v2, v3 be the vertices of TQ in counterclockwise order, with v1 being the
intersection point of the diagonals of Q. We set

Figure 7: Triangulation △0, where western subtriangles of Q ∈ ♦•
0 are

shaded.

D(v1) := {v1,
2
3
v1 + 1

3
v2,

2
3
v1 + 1

3
v3},

D(v2) := {v2,
2
3
v2 + 1

3
v1,

2
3
v2 + 1

3
v3},

D(v3) := {v3,
2
3
v3 + 1

3
v1,

2
3
v3 + 1

3
v2},

DQ :=
⋃

{D(vk) : k = 2, 3, vk /∈ ∂Ω}

c := 2
3
v1 + 2

9
v2 + 1

9
v3.

For any Q ∈ ♦n, let
si (Q)
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denote the number of edges of Q that are strictly interior, i.e., belong to
E si

n . Clearly, si (Q) = 0 if Q ∈ ∂♦n. If si (Q) = 2, we denote by w one of
the points w1 = 2

3
v1 + 1

3
v2 and w2 = 2

3
v1 + 1

3
v3, according to the following

rule: If the two strictly interior edges of Q share a vertex v of Q, then w is
on the diagonal of Q containing v. Otherwise, two opposite edges of Q are
not strictly interior, and it follows by Condition (f) that at least one of them
lies on the boundary of Ω. Therefore, there is a diagonal of Q with both
endpoints on the boundary of Ω, and we choose w on this diagonal.

We now define the set of points ΞQ ⊂ TQ ⊂ Q by

ΞQ :=























DQ ∪ D(v1) ∪ {c}, if si (Q) = 4,
DQ ∪ D(v1), if si (Q) = 3,
DQ ∪ D(v1) \ {w}, if si (Q) = 2,
DQ ∪ {v1}, if si (Q) = 1,
DQ, if si (Q) = 0,

see Figures 8–12. Finally, defining ΞQ = ∅ when the western subtriangle of
Q ∈ ♦•

n is not in Ω, we set

Ξn :=
⋃

Q∈♦•
n

ΞQ.

Note that 1) the sets ΞQ are disjoint for different Q, 2) #ΞQ = #DQ +si (Q),
3) #DQ is exactly three times the number of vertices of TQ that are in V i

n,
and each v ∈ V i

n is a vertex of TQ for one and only one Q ∈ ♦•
n, and 4)

every strictly interior edge e ∈ E si
n is an edge of one and only one Q ∈ ♦•

n.
Therefore,

#Ξn =
∑

Q∈♦•
n

#ΞQ =
∑

Q∈♦•
n

#DQ + si (Q) = 3#V i
n + #E si

n = dimSn,

where the last equality sign follows from Theorem 3.4.
For any Q ∈ ♦n, we denote by star(Q) the union of all quadrilaterals in

♦n having at least one vertex in common with Q, intersected with Ω

star(Q) :=
⋃

{Q′ ∩ Ω : Q′ ∈ ♦n, Q′ ∩ Q 6= ∅},

and by star2(Q) the union of stars of the quadrilaterals whose interiors have
nonempty intersection with star(Q),

star2(Q) :=
⋃

{star(Q′) : Q′ ∈ ♦n, int Q′ ∩ star(Q) 6= ∅}.
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Theorem 4.1. The set Ξn is a Lagrange interpolation set for Sn, n =
0, 1, . . ., i.e., for any real numbers aξ, ξ ∈ Ξn, there exists a unique func-
tion s ∈ Sn such that

s(ξ) = aξ, ξ ∈ Ξn.

Moreover,

‖s‖L∞(Q∩Ω)
<
∼ max {|aξ| : ξ ∈ Ξn ∩ star2(Q)}, Q ∈ ♦n, (4.1)

with a constant depending only on the minimal angle θ.

Proof. The first statement of the theorem is equivalent to the claim that the
point evaluation functionals

s(ξ), ξ ∈ Ξn,

form a basis for the dual space S∗
n. Since #Ξn = dimSn, this claim will

follow once we show that these functionals span S∗
n, i.e., that for any s ∈ Sn,

the condition s(ξ) = 0, ξ ∈ Ξn, implies s = 0. Therefore, both statements of
the theorem follow from the inequality

‖s‖L∞(Q∩Ω)
<
∼ max {|s(ξ)| : ξ ∈ Ξn ∩ star2(Q)}, Q ∈ ♦n, s ∈ Sn, (4.2)

that we are now going to check.
Let s ∈ Sn. We will prove (4.2) in several steps.

Step 1. Let Q ∈ ∂♦n. If all three vertices of the triangle Q∩Ω belong to
the boundary of Ω, then s|Q∩Ω = 0 by Lemma 3.1, and (4.2) trivially holds.

Otherwise, one of the vertices of Q∩Ω, call it ṽ, is in V i
n, and Condition (c)

shows that ṽ is a vertex of TQ′ for one and only one Q′ ∈ ♦•
n. In this step,

we will prove that

‖s‖L∞(Q∩Ω)
<
∼ max {|s(ξ)| : ξ ∈ Ξn ∩ TQ′}, Q ∈ ∂♦n, (4.3)

which obviously implies (4.2) for these Q.
In the notations we used to define ΞQ′, ṽ is either v2 or v3, and in the fol-

lowing we let v̄ denote the other of these two vertices, and in accordance with
the earlier notation we let v1 denote the intersection point of the diagonals
of Q′. We put e1 = [ṽ, v1] and ē = [ṽ, v̄]. Two univariate cubic polynomials
p̄(t) := s(tv̄ + (1 − t)ṽ) and p1(t) := s(tv1 + (1 − t)ṽ), t ∈ [0, 1], will play an
essential role below.
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Assume first that Q′ = Q. Then the edge [v̄, v1] is on the boundary,
and hence s(v̄) = ∂s

∂x
(v̄) = ∂s

∂y
(v̄) = 0, s(v1) = ∂s

∂x
(v1) = ∂s

∂y
(v1) = 0, and

∂s
∂n

( v̄+v1

2
) = 0. Since ṽ /∈ ∂Ω and si(Q) = 0, we have ΞQ = {ṽ, 2

3
ṽ + 1

3
v̄, 2

3
ṽ +

1
3
v1}. The polynomials p̄, p1 satisfy the interpolation conditions

p̄(0) = s(ṽ), p̄( 1
3
) = s(2

3
ṽ + 1

3
v̄), p̄(1) = p̄′(1) = 0,

p1(0) = s(ṽ), p1(
1
3
) = s(2

3
ṽ + 1

3
v1), p1(1) = p′1(1) = 0.

(4.4)

Therefore, the well-posedness of such a cubic interpolation scheme implies
that

|ē|
∣

∣

∣

∂s
∂ē

(ṽ)
∣

∣

∣
= |p̄′(0)| <

∼ max{|s(ṽ)|, |s( 2
3
ṽ + 1

3
v̄)|},

|e1|
∣

∣

∣

∂s
∂e1

(ṽ)
∣

∣

∣
= |p′1(0)| <

∼ max{|s(ṽ)|, |s( 2
3
ṽ + 1

3
v1)|},

and so with h being the diameter of TQ, we conclude that

max
{

h
∣

∣

∣

∂s
∂x

(ṽ)
∣

∣

∣
, h

∣

∣

∣

∂s
∂y

(ṽ)
∣

∣

∣

}

<
∼ max{|s(ṽ)|, |s( 2

3
ṽ + 1

3
v̄)|, |s(2

3
ṽ + 1

3
v1)|},

with a constant depending only on the smallest angle in TQ. Lemma 3.1,

applied to TQ as well as to the triangle Q \ TQ ∩ Ω, now shows that

‖s‖L∞(Q∩Ω)
<
∼ max

ξ∈ΞQ

|s(ξ)|,

with a constant depending only on the smallest angle θ, which in turn implies
(4.3).

Assume now that Q′ 6= Q. It then follows from Condition (f) that Q′ ∈
♦n \ ∂♦n. If v̄ ∈ ∂Ω, then the polynomial p̄ satisfies (4.4). Otherwise, we
use the interpolation scheme

p̄(0) = s(ṽ), p̄( 1
3
) = s(2

3
ṽ + 1

3
v̄), p̄(2

3
) = s(1

3
ṽ + 2

3
v̄), p̄(1) = s(v̄),

and in both cases we arrive at

|ē|
∣

∣

∣

∂s
∂ē

(ṽ)
∣

∣

∣
= |p̄′(0)| <

∼ max
ξ∈ΞQ′∩ē

|s(ξ)|. (4.5)

Analogously, in case

{ṽ, 2
3
ṽ + 1

3
v1,

1
3
ṽ + 2

3
v1, v1} ⊂ ΞQ′ ∩ e1, (4.6)
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we get

|e1|
∣

∣

∣

∂s
∂e1

(ṽ)
∣

∣

∣
= |p′1(0)| <

∼ max
ξ∈ΞQ′∩e1

|s(ξ)| <
∼ max

ξ∈ΞQ′

|s(ξ)|. (4.7)

With the bounds we derived for | ∂s
∂ē

(ṽ)| and | ∂s
∂e1

(ṽ)|, we infer (4.3) similarly
to the case that Q = Q′.

Condition (f) shows that if Q′ only shares ṽ with Q but not an edge,
then both edges of Q′ emanating from ṽ are strictly interior, and Q′ has no
common edges with quadrilaterals in ♦n\∂♦n. If si(Q′) ≥ 3, then (4.6) is
valid. Otherwise si(Q′) = 2, and both edges e′, e′′ emanating from the vertex
u of Q′ opposite to ṽ are on ∂Ω, so that ΞQ′ = D(ṽ) ∪ D(v1)\{

2
3
v1 + 1

3
ṽ},

and in particular, ΞQ′ ∩ e1 = {ṽ, 2
3
ṽ + 1

3
v1, v1} i.e., (4.6) is not valid, and

we will derive (4.7) in a different way. With e2 := [u, v1], from the fact that
on both e′ and e′′, s as well as its normal derivative are identically zero, an
application of Lemma 3.2 shows that ‖s‖L∞(e2)

<
∼ |s(v1)|, and so by Markov’s

inequality we have

|e1||
∂s
∂e1

(v1)| h |e2||
∂s
∂e2

(v1)| <
∼ |s(v1)|.

Using the interpolation scheme

p1(0) = s(ṽ), p1(
1
3
) = s(2

3
ṽ + 1

3
v1), p1(1) = s(v1), p′1(1) = |e1|

∂s
∂e1

(v1),

we arrive at (4.7).
Now suppose that Q′ shares its edge ē = [ṽ, v̄] with Q. In view of Condi-

tion (f), the other edge of Q′ emanating from ṽ is strictly interior, and hence
1 ≤ si (Q′) ≤ 3. In the case si (Q′) = 3 the inclusion (4.6) holds and implies
(4.7). Moreover, it is not difficult to see that the same is true if si (Q′) = 2.
Indeed, if the edge e′ of Q′ opposite to ē is strictly interior, then the point
w (in the notation we used to define ΞQ′) is on the diagonal containing the
common vertex of the two strictly interior edges, hence w /∈ e1, which implies
(4.6). Otherwise, by Condition (f), e′ lies on the boundary of Ω, and w is
chosen on the diagonal of Q′ with both endpoints on the boundary. Since
ṽ /∈ ∂Ω, w is not on e1 in this case either.

It remains to consider the case si (Q′) = 1. Then ΞQ′ ∩ e1 = {ṽ, 2
3
ṽ +

1
3
v1, v1}. By Condition (f), the edge e′ of Q′ opposite to the common edge ē

of Q and Q′ belongs to the boundary of Ω, which implies that s along with
its first normal derivative is zero on e′. As above, we denote by u the vertex
of Q′ opposite to ṽ, and by e′′ the edge of Q′ different from e′ emanating from
u. There are two possibilities for e′′ since it is not strictly interior: Either it
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also belongs to the boundary, or Q′ shares it with a quadrilateral Q′′ ∈ ∂♦n.
Since v̄, u ∈ ∂Ω, in the latter case all three vertices of the triangle Q′′ ∩ Ω
are on ∂Ω, and so s|Q′′ = 0 by Lemma 3.1. We conclude that s and its
first order derivatives are zero at both endpoints of e′′ and also that its first
normal derivative is zero at the midpoint of e′′, meaning that s along with its
first order normal derivative vanishes on e′′. Since this obviously also holds
when e′′ belongs to the boundary, we arrive at same situation that we already
encountered in the case Q ∩ Q′ = {ṽ}, and that was shown above to imply
(4.7) and thus (4.3).

Step 2. We prove that for any Q ∈ ♦•
n and each vertex v of TQ,

max
{

|s(v)|, h
∣

∣

∣

∂s
∂x

(v)
∣

∣

∣
, h

∣

∣

∣

∂s
∂x

(v)
∣

∣

∣

}

<
∼ max {|s(ξ)| : ξ ∈ Ξn ∩ star(Q)}. (4.8)

In view of the Markov inequality, it is sufficient to show that for any edge e
of TQ,

‖s‖L∞(e)
<
∼ max {|s(ξ)| : ξ ∈ Ξn ∩ star(Q)}. (4.9)

Let v1, v2, v3 be the three vertices of TQ in the notation introduced at the
beginning of this section. The edge [v2, v3] contains two points of Ξn for each
of v2, v3 not lying on the boundary, and the standard argument involving the
appropriate univariate Lagrange or Hermite interpolation scheme shows that
(4.9) holds for e = [v2, v3].

Let us now consider e = [vi, v1] for some i = 2, 3, say for i = 2. Clearly,
if Q ∈ ∂♦n, then (4.9) follows from (4.3), and so there remains to consider
Q ∈ ♦•

n\∂♦n.
If si (Q) ≥ 3, then e contains four points of Ξn if v2 ∈ V i

n, and two points
if v2 ∈ ∂Ω. In both cases (4.9) immediately follows.

Let si (Q) = 2. We first assume that the two edges e′, e′′ of Q emanating
from v2 are not strictly interior. If e′ is a boundary edge, then s as well as its
first order derivatives vanish on e′. Otherwise Q shares e′ with a quadrilateral
from ∂♦n, and with M being the right hand side of (4.9), (4.3) together with
the Markov inequality show that

h‖ ∂s
∂x
‖L∞(e′)

<
∼ M, h‖ ∂s

∂y
‖L∞(e′)

<
∼ M, ‖s‖L∞(e′)

<
∼ M.

The same conclusions are valid for e′′. Since v1 ∈ ΞQ, an application of
Lemma 3.2 with T1, T2 being the two subtriangles of Q sharing the edge e,
now shows that ‖s‖L∞(e)

<
∼ M.
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If si (Q) = 2 and the above edges e′, e′′ are strictly interior, then, with
ẽ = [v1, u] where u is the vertex of Q opposite to v2, the same arguments
show that ‖s‖L∞(ẽ)

<
∼ M, and so, by Markov’s inequality,

|e|
∣

∣

∣

∂s
∂e

(v1)
∣

∣

∣
h |ẽ|

∣

∣

∣

∂s
∂ẽ

(v1)
∣

∣

∣

<
∼ M,

which in turn leads to ‖s‖L∞(e)
<
∼ M by the standard argument.

The remaining cases when si (Q) = 2 and two opposite edges of Q are
strictly interior, si (Q) = 1 or si (Q) = 0 follow in a similar way from
Lemma 3.3 by estimates (3.7), (3.6) or (3.4), respectively.

Step 3. We prove (4.2) for each Q ∈ ♦•
n \ ∂♦n.

We first assume that si (Q) = 4 and show

‖s‖L∞(TQ)
<
∼ max

ξ∈Ξn∩TQ

|s(ξ)|. (4.10)

Denote by T̃ the reference triangle with vertices ṽ1 := (0, 0), ṽ2 := (1, 0) and
ṽ3 := (0, 1). Given Q ∈ ♦•

n, let AQ : R
2 → R

2 be the unique affine mapping
such that AQ(ṽi) = vi, i = 1, 2, 3. Then AQ(T̃ ) = TQ, and for the polynomial
p = s(AQ·)|T̃ ∈ P3, we have

‖s‖L∞(TQ) = ‖p‖L∞(T̃ ), max
ξ∈Ξn∩TQ

|s(ξ)| = max
ξ∈Ξ̃

|p(ξ)|,

where Ξ̃ := A−1
Q (Ξn ∩ TQ) is a 10 point set independent of Q ∈ ♦•

n and n.

Since Ξ̃ consists of 4, . . . , 1 points on parallel lines x + y = 1, x + y = 1/3,
x + y = 2/3 and x + y = 0, respectively, it is a well-posed set for Lagrange
interpolation with bivariate cubic polynomials [1]. Therefore,

‖p‖L∞(T̃ )
<
∼ max

ξ∈Ξ̃
|p(ξ)|,

with an absolute constant. This completes the proof of (4.10). In view of
(4.10) and (4.8) (where star(Q′) for some Q′ ⊂ star(Q) different from Q may
be involved), a repeated application of Lemma 3.1 starting on a subtriangle
T of Q adjacent to TQ shows (4.2) for such a Q.

Let now si (Q) = 3, and let e be the edge of Q, with midpoint we, that
fails to be strictly interior. If e ⊂ ∂Ω or e is an edge of Q̃ ∈ ∂♦n such that
the triangle Q̃ ∩ Ω has all its vertices on ∂Ω, then ∂s

∂e⊥
(we) = 0. Otherwise,
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e is an edge of Q̃ ∈ ∂♦n such that Q̃ ∩ Ω has one interior vertex. By noting
that this vertex is necessarily also a vertex of Q, an application of (4.3) shows
that

h
∣

∣

∣

∂s
∂e⊥

(we)
∣

∣

∣

<
∼ M,

where M denotes the right hand side of (4.2). Because of this estimate and
(4.8), a repeated application of Lemma 3.1, starting with the subtriangle of
Q attached to e, implies (4.2) for this Q.

Similarly, in the remaining cases where si (Q) ≤ 2, (4.2) follows from (4.3)
and (4.8) and one of the estimates (3.4), (3.5), (3.6) or (3.7) from Lemma 3.3.

Step 4. We prove (4.2) for each Q ∈ ♦◦
n \ ∂♦n.

Let v1, . . . , v4 be the vertices of Q, and w1, . . . , w4 the midpoints of its
edges e1, . . . , e4, respectively. Since each vi is a vertex of TQ′ for some Q′ ∈
♦•

n, we have by (4.8),

max
{

|s(vi)|, h
∣

∣

∣

∂s
∂x

(vi)
∣

∣

∣
, h

∣

∣

∣

∂s
∂x

(vi)
∣

∣

∣
, 1 ≤ i ≤ 4

}

<
∼ M,

where
M = max {|s(ξ)| : ξ ∈ Ξn ∩ star2(Q)}.

In view of Lemma 3.3, the proof will be completed if we show that

h
∣

∣

∣

∂s
∂e⊥i

(wi)
∣

∣

∣

<
∼ M (4.11)

for each i = 1, . . . , 4.
We fix 1 ≤ i ≤ 4 and notice that ∂s

∂e⊥i
(wi) = 0 if ei is a boundary edge.

Furthermore, if Q shares ei with a quadrilateral in ∂♦n, then (4.11) follows
from (4.3).

It remains to consider the case that ei is a strictly interior edge. Denote
by Q̃ the quadrilateral in ♦n \ ∂♦n such that ei is a common edge of Q and
Q̃. Obviously, Q̃ ∈ ♦•

n. By (4.8),

max
{

|s(v)|, h
∣

∣

∣

∂s
∂x

(v)
∣

∣

∣
, h

∣

∣

∣

∂s
∂x

(v)
∣

∣

∣

}

<
∼ M,

for any vertex v of TQ̃. Moreover, in view of (4.3), if e is an edge of Q̃ with
vertices u1, u2, and e is not strictly interior, then

max
{

|s(uj)|, h
∣

∣

∣

∂s
∂x

(uj)
∣

∣

∣
, h

∣

∣

∣

∂s
∂x

(uj)
∣

∣

∣
, j = 1, 2, h

∣

∣

∣

∂s
∂e⊥

(u1+u2

2
)
∣

∣

∣

}

<
∼ M.
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It is easy to see that the estimates of the last two displays are sufficient for
obtaining (4.11) by at most three applications of Lemma 3.1 if si (Q̃) ≤ 3.

Finally, if si (Q̃) = 4, then h
∣

∣

∣

∂s
∂e⊥

(w)
∣

∣

∣

<
∼ M for the midpoint w of each edge e

of TQ̃ by (4.10). Now at most two applications of Lemma 3.1 complete the
proof of (4.11).

The Lagrange basis functions Bn
ξ , ξ ∈ Ξn, for Sn are uniquely defined by

the conditions

Bn
ξ (η) =

{

1, if η = ξ,
0, if η ∈ Ξn \ {ξ}.

By Theorem 4.1, Bn
ξ is well defined, and we have for ξ ∈ Q ∈ ♦•

n,

supp Bn
ξ ⊂ star2(Q),

and
‖Bn

ξ ‖L∞(Ω)
<
∼ 1,

only depending on θ. Since

diam (Q) h 3−n, Q ∈ ♦n, (4.12)

only dependent on the initial quadrangulation ♦0, we also have

‖Bn
ξ ‖L2(Ω) h 3−n.

These properties immediately imply that the bases

{3nBn
ξ : ξ ∈ Ξn}, n = 0, 1, . . . , (4.13)

are uniformly L2-stable, i.e.,

∥

∥

∥

∑

ξ∈Ξn

cξB
n
ξ

∥

∥

∥

L2(Ω)
h 3−n

(

∑

ξ∈Ξn

c2
ξ

)1/2

, (4.14)

for any real numbers cξ, where the constants of equivalence are independent
of n.

Finally, because of the triadic refinement procedure, and our choice of
the point c as being 2

3
v1 + 2

9
v2 + 1

9
v3 instead of taking the more obvious point

1
3
(v1 + v2 + v3) as was done in [9], we have

Ξn ⊂ Ξn+1, n = 0, 1, . . . , (4.15)

see Figures 8–12.
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v1

c

v2

v3

Figure 8: ΞQ for some Q ∈ ♦•
n (left) and

⋃

{ΞQ̃ : Q̃ ∈ ♦•
n+1, Q̃ ⊂ Q}

(right), in the case si (Q) = 4.

v1

v3

Figure 9: ΞQ for some Q ∈ ♦•
n (left) and

⋃

{ΞQ̃ : Q̃ ∈ ♦•
n+1, Q̃ ⊂ Q}

(right), in the case si (Q) = 3. Here Q has its northern edge at the boundary.
Moreover, si (Q̃) = 3 for both Q̃ that touch this boundary, and si (Q̃) = 4 for
the other three.
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v1

Figure 10: ΞQ for some Q ∈ ♦•
n (left) and

⋃

{ΞQ̃ : Q̃ ∈ ♦•
n+1, Q̃ ⊂ Q}

(right), in the case si (Q) = 2. Here Q has its northern and western edges at
the boundary.

v1

Figure 11: ΞQ for some Q ∈ ♦•
n (left) and

⋃

{ΞQ̃ : Q̃ ∈ ♦•
n+1, Q̃ ⊂ Q}

(right), in the case si (Q) = 1. Here Q has its northern and western edges
at the boundary and shares its eastern edge with a Q′ ∈ ∂♦n. (Q′ is not
shown.)
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v3

Figure 12: ΞQ for some Q ∈ ♦•
n (left) and

⋃

{ΞQ̃ : Q̃ ∈ ♦•
n+1, Q̃ ⊂ Q}

(right), in the case si (Q) = 0 and Q ∈ ∂♦n. Only the part Q ∩ Ω is shown.

5 Stable multiscale decompositions

Since Sn has a stable local basis and locally contains all polynomials of degree
3 (with obvious modifications at the boundary), it is easy to see that the
following Jackson estimate

inf
un∈Sn

‖u − un‖L2(Ω)
<
∼ 3−4n‖u‖H4(Ω) (u ∈ H4(Ω) ∩ H2

0 (Ω))

holds (recall (4.12)). On the other hand, since Sn consists of piecewise poly-
nomials and Sn ⊂ C1(Ω), the following Bernstein estimate is valid for any
s ∈ [0, 5

2
),

‖un‖Hs(Ω)
<
∼ 3sn‖un‖L2(Ω) (un ∈ Sn).

Let us now define Hs = [L2(Ω), H2
0 (Ω) ∩ H4(Ω)]s/4 for s ∈ [0, 4], and

Hs = (H−s)′ for s ∈ [−4, 0). Note that Hs = Hs(Ω)∩H2
0 (Ω) when s ∈ [2, 4],

whereas Hs = Hs
0(Ω) when s ∈ [0, 2]\{ 1

2
, 3

2
} (see [14]).

With Qn being the L2(Ω)-orthogonal projector onto Sn, and Q−1 := 0,
it is known that as a consequence of the Jackson and Bernstein estimates
and the nestedness (2.1) of the spaces Sn as function of n, it holds that for
|s| < 5

2
,

‖u‖2
Hs h

∞
∑

n=0

32ns‖(Qn − Qn−1)u‖
2
L2(Ω) (u ∈ Hs) (5.1)
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(see [21, 23, 16, 4]; a relatively short, self-contained proof in the more general
biorthogonal setting can be found in [8, Appendix]).

As shown in [11, Proposition 3], a consequence of (5.1) is that for any
s ∈ (0, 5

2
),

‖u‖2
Hs h inf

un∈Sn:u=
P

n un

∞
∑

n=0

32ns‖un‖
2
L2(Ω) (u ∈ Hs), (5.2)

where thus the infimum is taken over all representations of u in the form
u =

∑∞
n=0 un, un ∈ Sn.

Let In be the Lagrange interpolator onto Sn corresponding to Theo-
rem 4.1, and let I−1 := 0. By the Sobolev embedding theorem, In is well
defined on Hs(Ω) when s > 1. As follows from (4.14), for un ∈ Sn we have

‖un‖L2(Ω)
<
∼ 3−n

(

∑

ξ∈Ξn

un(ξ)2
)1/2

. (5.3)

On the other hand, since Sm consists of piecewise polynomials, for all um ∈
Sm, ξ ∈ Ω and any Tξ ∈ △m containing ξ it holds that

|um(ξ)| ≤ ‖um‖L∞(Tξ) h 3m‖um‖L2(Tξ). (5.4)

Therefore, by (5.3),

‖Inum‖
2
L2(Ω)

<
∼ 3−2n

∑

ξ∈Ξn

|um(ξ)|2 <
∼ 32m−2n

∑

ξ∈Ξn

‖um‖
2
L2(Tξ).

If m ≥ n, then every triangle T ∈ △m appears in the last sum at most 10
times, so that

∑

ξ∈Ξn

‖um‖
2
L2(Tξ) =

∑

ξ∈Ξn

∫

Tξ

|um|
2 ≤ 10

∑

T∈△m

∫

T

|um|
2 = 10‖um‖

2
L2(Ω),

and we conclude that

‖Inum‖L2(Ω)
<
∼ 3m−n‖um‖L2(Ω), um ∈ Sm, m ≥ n. (5.5)

Remark 5.1. By using the nesting (4.15) of the Lagrange interpolation sets,
(5.5) can be directly deduced from (4.14) since

∑

ξ∈Ξn

|um(ξ)|2 ≤
∑

ξ∈Ξm

|um(ξ)|2

in that case. For completeness we included the above arguments showing
that the nesting is not essential at this point.
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As a consequence of (5.2) and (5.5), for s ∈ (1, 5
2
) it holds that

‖u‖2
Hs h

∞
∑

n=0

32ns‖(In − In−1)u‖
2
L2(Ω) (u ∈ Hs). (5.6)

Although this statement can be deduced from [5], for convenience of the
reader we include a short proof here. In view of (5.2), it is sufficient to show
the inequality “>

∼”. For some s ∈ (1, 5
2
) and u ∈ Hs, let u =

∑∞
ℓ=0 uℓ with

uℓ ∈ Sℓ. Since the interpolators In are projectors and the spaces Sn are
nested, we have (In − In−1)Sℓ = 0 when ℓ ≤ n − 1. From this and (5.5), we
have

∞
∑

n=0

32ns‖(In − In−1)u‖
2
L2(Ω)

=
∞

∑

n=0

∞
∑

ℓ,ℓ′=0

32ns((In − In−1)uℓ, (In − In−1)uℓ′)L2(Ω)

=

∞
∑

ℓ,ℓ′=0

min{ℓ,ℓ′}
∑

n=0

32ns((In − In−1)uℓ, (In − In−1)uℓ′)L2(Ω)

<
∼

∞
∑

ℓ,ℓ′=0

min{ℓ,ℓ′}
∑

n=0

32ns3ℓ+ℓ′−2n‖uℓ‖L2(Ω)‖uℓ′‖L2(Ω)

h

∞
∑

ℓ,ℓ′=0

3(s−1)(2 min{ℓ,ℓ′}−ℓ−ℓ′)
(

3ℓs‖uℓ‖L2(Ω)

)

(

3ℓ′s‖uℓ′‖L2(Ω)

)

<
∼

∞
∑

ℓ=0

32ℓs‖uℓ‖
2
L2(Ω),

where the last line is a consequence of the fact that the infinite matrix
[3(s−1)(2 min{ℓ,ℓ′}−ℓ−ℓ′)]ℓ′,ℓ∈N0

defines a bounded mapping on ℓ2. Since the split-
ting u =

∑∞
ℓ=0 uℓ was arbitrary, from (5.2) we conclude that

∞
∑

n=0

32ns‖(In − In−1)u‖
2
L2(Ω)

<
∼ ‖u‖2

Hs

and so that (5.6) is valid.
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6 Hierarchical basis and its applications

Thanks to the nesting (4.15) of the interpolation sets, the following subsets
of (4.13),

{3nBn
ξ : ξ ∈ Ξn\Ξn−1}, n = 0, 1, . . . , (Ξ−1 := ∅),

are uniformly L2-stable bases for the spaces Im(In − In−1). From (5.6) we
therefore conclude that for any s ∈ (1, 5

2
),

∪∞
n=0{3

(1−s)nBn
ξ : ξ ∈ Ξn\Ξn−1} (6.1)

is a Riesz basis for Hs, i.e.,

‖
∞

∑

n=0

3(1−s)n
∑

ξ∈Ξn\Ξn−1

cξBξ‖
2
Hs(Ω) h

∞
∑

n=0

∑

ξ∈Ξn\Ξn−1

c2
ξ .

As a consequence, for any J ∈ N, ∪J
n=0{3

(1−s)nBn
ξ : ξ ∈ Ξn\Ξn−1} is a

uniformly Hs-stable basis for SJ .
Since for J ≥ 1, it is the union of the corresponding basis for SJ−1 and

some complement set, such a basis and also (6.1) are known as hierarchical
bases.

Remark 6.1. By straightforward adaptation of the proof from §5, for s = 1
we obtain the suboptimal result

J−2
J

∑

n=0

∑

ξ∈Ξn\Ξn−1

c2
ξ

<
∼ ‖

J
∑

n=0

∑

ξ∈Ξn\Ξn−1

cξBξ‖
2
H1(Ω)

<
∼

J
∑

n=0

∑

ξ∈Ξn\Ξn−1

c2
ξ

for any scalars cξ.

Remark 6.2. C1 hierarchical bases were constructed earlier in [5]. There the
functionals defining the bases involve both function values and derivatives, so
that the corresponding interpolator Ĩn is only well defined on Hs(Ω) when
s > 2, whereas instead of (5.5), only ‖Ĩnum‖L2(Ω)

<
∼ (ρm−n)2‖um‖L2(Ω) is

valid, with ρ being the refinement factor (ρ = 2 in [5] and ρ = 3 here). As
a consequence, properly scaled, these bases generate Riesz bases for Hs for
2 < s < 5

2
, whereas for the interesting case s = 2 a suboptimal result is valid,

similar as in Remark 6.1.

31



The above constructed hierarchical bases can be used to solve the bound-
ary value problems of fourth order. For example, consider the biharmonic
equation

△2u = f on Ω, u = ∂nu = 0 on ∂Ω,

which appears as result of the modeling of plate bending problems. After
switching to a variational formulation, the Ritz-Galerkin approximation uJ ∈
SJ solves

a(uJ , vJ) = (f, vJ)L2(Ω) (vJ ∈ SJ),

where a(u, v) =
∫

Ω

∑

i,j ∂2
iju ∂2

ijv dx.

Since a(v, v) h ‖v‖H2(Ω) (v ∈ H2
0 (Ω)), exploiting the properly scaled

hierarchical basis ∪J
n=0{3

−nBn
ξ : ξ ∈ Ξn\Ξn−1} leads to uniformly well-

conditioned stiffness matrices, meaning that standard iterative methods, like
the conjugate gradient method, converge with a rate less than 1 uniformly
in J . For comparison, note that standard, single scale bases for SJ give rise
to stiffness matrices with condition numbers of the order h−4

J with hJ = 3−J .
A potential problem with the use of the hierarchical basis is that, due to

the increasing sizes of the supports of the basis functions on lower levels, the
resulting stiffness matrix is not (fully) sparse. Indeed, one may verify that
this matrix has ∼ dimSJ log(dimSJ) non-zero entries. Fortunately, a direct
matrix-vector multiplication using this matrix can be avoided. Indeed, let
ΦJ be a locally supported single-scale basis for SJ , e.g., the Hermite type
basis associated to (3.11). With BJ, AJ denoting the stiffness matrices
with respect to our hierarchical basis and ΦJ , respectively, and with TJ

denoting the basis transformation from the hierarchical basis to ΦJ , it holds
that BJ = T

∗
J
AJTJ. The matrix AJ is sparse, and since by a recursive

evaluation, both TJ and T
∗
J

can be performed in O(dimSJ) operations (for
details see e.g. [8, §4.4]), we conclude that in this factorized way, BJ can be
applied to a vector taking only O(dimSJ ) operations. Similar remarks apply
to an efficient evaluation of the right hand side of the matrix-vector system.

Remark 6.3. Under similar assumptions on the triangulations, more general
spaces

Sn = {s ∈ C1(Ω) : s|T ∈ P3 for all T ∈ △n,
s = ∂s

∂x
= ∂s

∂y
= 0 on Γ0 ⊂ ∂Ω, s = 0 on Γ1 ⊂ ∂Ω},

useful for other plate problems commonly encountered in practice (see, e.g. [3]),
may also be considered when Γ0 and Γ1 are unions of subsets of the edges of
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the initial triangulation. (It is possible that Γ0 or Γ1 are given in the form of
cracks as explained in Remark 2.3.) We conjecture that all the above results
extend to these spaces, with natural modifications.

Another application of hierarchical bases is surface compression, see [12].
For this application, the fact that our basis is of Lagrange type, instead of
the Hermite basis as employed in [12], has the obvious practical advantage
that only Lagrange data of the surface is needed. Also the larger range of
stability of our basis might extend its applicability here.

A Construction of an initial quadrangula-

tion

A.1 Convex domains

Let Ω be a convex domain with piecewise linear boundary with vertices
v1, . . . , vN , N ≥ 3, in, say, counterclockwise order. It is quite easy to con-
struct an initial quadrangulation satisfying (a)–(e) for such a domain. If
N = 4, the domain itself is a nondegenerate convex quadrilateral Q, and we
take ♦0 = {Q}. For N = 3 we define Q as a parallelogram whose three
vertices are v1, v2, v3, and one of diagonals is, say, [v1, v2]. We again take
♦0 = {Q}. If N ≥ 5, we split the domain into ⌈N/2⌉ − 1 subdomains by
connecting vi with vN−i+1, i = 2, . . . , ⌈N/2⌉−1. If N is even, all subdomains
are nondegenerate convex quadrilaterals, and, since they are connected into
one strip, it is obvious that Conditions (a)–(e) are satisfied for the quadran-
gulation they build. If N is odd, we get ⌈N/2⌉ − 2 quadrilaterals and one
triangle with vertices v⌈N/2⌉−1, v⌈N/2⌉, v⌈N/2⌉+1. By extending this last triangle
to a parallelogram with these three vertices and diagonal [v⌈N/2⌉−1, v⌈N/2⌉],
we arrive at a quadrangulation satisfying (a)–(e).

Obviously, the introduction of additional subdivisions and properly lo-
cated interior vertices may improve the quality of this quadrangulation and
that of the corresponding starting triangulation △0.
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A.2 Construction of a quadrangulation satisfying (a)–
(e) in general

Theorem A.1. Let Ω be a domain with Lipschitz’ continuous, piecewise
linear boundary. Then there exists a quadrangulation ♦0 satisfying (a)–(e)
with respect to Ω.

Proof. The boundary of Ω is determined by a number of points and an equal
number of line segments connecting them. In this construction, we refer to
these points as being “nodes”, to distinguish them from the corner points
of the polygons in the subdivision of Ω which we call “vertices”. (Thus, all
nodes are vertices, but not otherwise.)

For any node v that corresponds to a re-entrant corner with both legs
either in the upper or lower half plane, we cut Ω along the vertical line ℓ
through v. More precisely, if Ω ∩ ℓ consists of more than one disjoint parts,
we cut Ω only along those parts that either have both v as an endpoint
and lie in the other half plane than the legs, or that do not cut Ω in two
disconnected parts. By rotating Ω in advance, we may assume that ℓ does
not contain nodes other than v.

Let A denote the set of all points of intersection of ∂Ω and the vertical
lines we have drawn, together with all nodes, except those that do both not
correspond to a re-entrant corner and have both legs in the same upper or
lower half plane. For any v ∈ A, we cut Ω along the horizontal line ℓ through
v. More precisely, if Ω∩ ℓ consists of more than one disjoint parts, we cut Ω
only along those parts that either have v as an endpoint, or that do not cut
Ω in two disconnected parts. For an illustration, see Figure 13.

By construction we obtained a subdivision of Ω into polygons. This sub-
division is conforming, in the sense that the intersection between any two
different polygons in the subdivision is either empty or a common vertex or
edge. The number of interior edges emanating from any boundary vertex
does not exceed four, and vertices inside Ω are of degree exactly four.

Now suppose that some polygon in the subdivision has three vertices
v(1), v(2), v(3) with different second coordinates, say v

(1)
y < v

(2)
y < v

(3)
y . Since

by construction Ω is cut along the horizontal line through v(2) we encounter
a contradiction. We conclude that all polygons in the subdivision are either
quadrilaterals or triangles.

The (interior) angles at all interior vertices of the subdivision are equal to
π/2, which in particular means that polygons that do not touch the boundary
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Figure 13: Initial quadrangulation according to the proof of Theorem A.1.
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Figure 14: Illustration with Condition (e).

are rectangles. The (interior) angles at vertices on the boundary are < π and
so all remaining quadrilaterals are also convex.

All drawn horizontal and vertical lines define a logically rectangular mesh
put over Ω. Obviously, there exists a black-and-white coloring of the rect-
angles in this mesh such that each one shares its interior edges only with
rectangles of opposite color. Furthermore, there exists a canonical way to
assign predicates north, east, south and west to all interior edges of all rect-
angles such that different rectangles may only share north-south or east-west
edges. The polygons from our subdivision are either rectangles of this mesh
or they are subsets of such rectangles. Although it may happen that more
than one polygons are subsets of one ‘parent’ rectangle, in that case these
polygons do not share an edge. We conclude that if we let the polygons
inherit both the colors and the predicates north, east, south or west for their
internal edges from their parent rectangles, then Condition (c) of Section 2
is satisfied.

For each triangle T from the subdivision, it is easy to construct a quadri-
lateral Q such that T is equal to Ω∩Q, which in turn is equal to one of both
triangles generated by splitting Q along its diagonals. We conclude that our
subdivision satisfies (a)–(d).

Finally, we have to check (e). By our use of horizontal and vertical lines
only, (e) can only be violated in the three geometrical situations as illustrated
in Figure 14. The situations in the left and middle picture can actually
not occur, since by construction Ω is not cut along the dotted lines. Yet,
the situation in the right picture is possible. However, after one triadic (or
dyadic) refinement step as discussed in Section 2, such a situation is no longer
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Figure 15: Initial quadrangulation “by hand” for the domain of Figure 13.

possible, so by replacing ♦0 by ♦1 we have found an initial quadrangulation
that satisfies (a)-(e).

Remark A.1. Although for simplicity we restricted ourselves to domains with
Lipschitz’ continuous boundaries, the construction from the above proof can
be extended to domains with cracks.

Remark A.2. Although the construction from the above existence proof may
give some hints how to obtain a quadrangulation in practice, it should not
be applied without care. Indeed, because of the restriction to horizontal and
vertical lines only, even for “nice” domains it may result in quadrilaterals
with bad aspect ratios, and small angles. If a given domain is not very
complicated, a suitable starting quadrangulation can in many cases be easily
found “by hand,” as Figure 15 illustrates.
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