Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Hierarchical Riesz Bases for Hs(Omega), 1 < s < 5/2

Davydov, Oleg and Stevenson, Rob (2005) Hierarchical Riesz Bases for Hs(Omega), 1 < s < 5/2. Constructive Approximation, 22 (3). pp. 365-394. ISSN 0176-4276

[img]
Preview
PDF (strathprints004543.pdf)
strathprints004543.pdf

Download (324kB) | Preview

Abstract

On arbitrary polygonal domains $Omega subset RR^2$, we construct $C^1$ hierarchical Riesz bases for Sobolev spaces $H^s(Omega)$. In contrast to an earlier construction by Dahmen, Oswald, and Shi (1994), our bases will be of Lagrange instead of Hermite type, by which we extend the range of stability from $s in (2,frac{5}{2})$ to $s in (1,frac{5}{2})$. Since the latter range includes $s=2$, with respect to the present basis, the stiffness matrices of fourth-order elliptic problems are uniformly well-conditioned.