Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Hierarchical Riesz bases for Hs(Omega), 1 < s < 5/2

Davydov, Oleg and Stevenson, Rob (2005) Hierarchical Riesz bases for Hs(Omega), 1 < s < 5/2. Constructive Approximation, 22 (3). pp. 365-394. ISSN 0176-4276

[img]
Preview
Text (strathprints004543)
strathprints004543.pdf - Accepted Author Manuscript

Download (329kB) | Preview

Abstract

On arbitrary polygonal domains $Omega subset RR^2$, we construct $C^1$ hierarchical Riesz bases for Sobolev spaces $H^s(Omega)$. In contrast to an earlier construction by Dahmen, Oswald, and Shi (1994), our bases will be of Lagrange instead of Hermite type, by which we extend the range of stability from $s in (2,frac{5}{2})$ to $s in (1,frac{5}{2})$. Since the latter range includes $s=2$, with respect to the present basis, the stiffness matrices of fourth-order elliptic problems are uniformly well-conditioned.