Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

A middleware for pervasive situation-awareness

Thomson, Graham and Terzis, Sortirios (2012) A middleware for pervasive situation-awareness. In: Distributed Applications and Interoperable Systems. Springer: Lecture Notes in Computer Science, pp. 148-161. ISBN 9783642308222

[img]
Preview
PDF
DAIS_CR_Paper.pdf - Preprint

Download (400kB) | Preview

Abstract

Situation-awareness is the ability of applications to adapt to the current situation of their users. For situation-awareness to be truly pervasive it should support the individual needs of every user, everywhere. We present a middleware for pervasive situation-awareness based on the idea of separating the features of a situation from the specification of how it should be recognised. The features of a situation can be seen as an interface that can be easily customised to satisfy individual user needs, while alternative specifications can be used to recognise a situation in different environments. The middleware views situations as collections of roles that individuals and devices play. Its implementation follows an agent-based architecture where collaborating agents acquire and reason over context data. We also show that the middleware can recognise a variety of highly customised situations using alternative specifications with performance that is acceptable for interactive situation-aware applications in realistic deployment sizes.