On Stable Local Bases for Bivariate
Polynomial Spline Spaces

Oleg Davydov Y and Larry L. Schumaker ?

Abstract. Stable locally supported bases are constructed for the spaces S} (A)
of polynomial splines of degree d > 3r 4+ 2 and smoothness r defined on trian-
gulations A\, as well as for various superspline subspaces. In addition, we show
that for » > 1, it is impossible to construct bases which are simultaneously
stable and locally linearly independent.

§1. Introduction

This paper deals with the classical space of polynomial splines
S;(A) :={se€C"(Q): s|pr € Py for all triangles T' € A},

where P, is the space of polynomials of degree d, and A is a regular triangulation
of a polygonal set 2. We also discuss superspline subspaces of the form

Sy (D) :={se Sy(A): se C’(v) forallv e V}, (1.1)

with p := {py}vey, Where p, are given integers such that r < p, < d, and V is the
set of all vertices of A.

Our aim is to describe algorithms for constructing locally supported bases
{Bi;}iez for these spaces which are stable in the following sense:

Killdleo < 1) ciBillo < Kallefloo (1.2)
1€L

for all choices of the coefficient vector ¢ = (¢;);cz. We are interested in a construc-
tion for which (1.2) holds with constants K; and K, which depend only on d and
the smallest angle A in the triangulation, and not on the number of triangles or
any other property of A. Stable bases are of critical importance for both theoretical
and practical purposes.
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To date, algorithms which produce stable local bases have been described only
for certain very special spline spaces, see Remarks 13.2-13.5. In this paper we
give algorithms to construct locally supported stable bases for general superspline
spaces S;*(A) with d > 3r + 2. Such bases for the full spline spaces Sj(A) (which
correspond to the choice p, = r for all v € V) are of special importance due to the
fact that these spaces are nested for nested triangulations, while most superspline
spaces are not, see Remark 13.6.

The paper is organized as follows. In Sects. 2-4 we review the Bernstein-
Bézier framework for dealing with bivariate splines and the minimal determining
set approach to constructing bases for spline spaces. In Sect. 5 we describe how to
construct corresponding dual basis splines. Sect. 6 contains a special construction
of minimal determining sets for superspline spaces defined on near-singular cells.
Sects. 7 and 8 deal with near-degenerate edges and near-singular vertices. In Sect. 9
we construct stable local bases for the superspline space S;*(A) defined by choosing
py = p for all v € V, where

(1.3)

r+1
5 .

wi=r+ \‘
In Sect. 10 we consider superspline spaces on arbitrary cells. The main result for
general superspline spaces S;”(A) is established in Sect. 11, and the connection

between stability and local linear independence is explored in Sect. 12. We conclude
the paper with several remarks in Sect. 13.

§2. The B-form of polynomials

In this section we briefly recall some well-known notation. Let T := (u,v,w) be
a triangle in the plane. Throughout the paper, whenever we write a triangle 7" in
terms of its vertices, we assume that u, v, w appear in counterclockwise order.

Given an integer d, we write {Bflj % }i+ji+k=d for the usual Bernstein polynomials
of degree d associated with T'. Then 1t is well known (cf. [12]) that every polynomial
p € P4 can be written uniquely in the form

i+j+k=d

The expansion (2.1) is called the Bernstein Bézier (B-) representation of p, and the
ciji, are called the B-coefficients. It is known that the Bfljk form a stable basis for
Py, cf. Lemma 4.1 of [25].

We follow the standard convention of associating the B-coefficient c;;; with
the domain point

&k = (iu + ju + kw)/d.
Thus, the coefficients of p can be indexed with the set

Da,r = {&j }itj+h=a- (2.2)



§3. The B-form of splines

Given a triangulation A, it is well known that there is a one-one correspondence
between the spline space Sg(A) and the set of coefficients {c¢ }¢ep, ., Where

Dd,A = U Dd,T- (31)

In particular, {c¢}¢ernp, , are the B-coefficients of s|r.
This means that the set Dy A can be used to parametrize SY(A). It is common
to write A¢ for the linear functional which picks off the B-coefficient c¢ of s € S(A).
We recall some additional standard notation. Given T = (u,v,w), we define

the distance of the domain point ££k from the vertex u to be dist( Z-:?k, u) :=d — 1,

with similar definitions for the other two vertices. We define the distance of ££k
from the edge (v, w) to be i, with similar definitions for the other two edges.
Given a vertex u, the ring of radius m around wu is the set R,,(u) := {n :
dist(n,u) = m}. The disk of radius m around u is Dy, (u) := {n: dist(n,u) < m}.
We also define the arc ay, .(u) around u associated with an edge e := (u, w) to be

the set of domain points in the ring R,,(u) whose distance to (u,w) is at most .

§4. Minimal determining sets

Suppose S is a linear subspace of SY(A), and that M C Dy a. Then M is said
to be a determining set for § if setting the coefficients of s € S associated with
the domain points in M to zero implies that all coefficients of s corresponding to
domain points in Dy A are zero. M is called a minimal determining set (MDS) for
S if no proper subset M’ C M is a determining set. It is well known that M is an
MDS if and only if, given any real numbers {c¢}eea, there exists a unique spline
s € S whose B-coefficients in M are {c¢}eem.

In this paper we are interested in subspaces of S(A) which are defined by
requiring that the B-coefficients {c¢}eep, , satisfy smoothness conditions across
edges or at vertices. If M is a MDS for such a spline space S, then setting the
B-coefficients ¢, for all £ € M, we can compute all remaining B-coefficients using
the smoothness conditions. Indeed, suppose s is a spline in SY(A), and let T :=
(v1,va,v3) and T := (v4, vs,v2) be a pair of adjoining triangles in A sharing the
edge e = (vq, v3). Let ¢;;i and é;;5 be the B-coefficients of s|7 and s\fTv, respectively.
Then it is well known (cf. [12,22]) that s is C" continuous across the edge e if and
only if

én,m—n,d—m = Z Ci,j+d—m,k+m—nBrZ'k('U4)7 (41)
i+j+k=n
for m =n,...,d and n = 1,...,r. Here B?jk are the Bernstein polynomials of

degree n on the triangle 7. We recall the following two lemmas from [25].
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Lemma 4.1. Suppose s is a spline in 8j(A\), and that for fixed n < m < d and
1 < n < r the coefficients appearing on the right-hand side of (4.1) are known, and
that C is the maximum of their absolute values. Then |cp m—n,d—m| < KC, where
K is a constant depending only on d and the smallest angle in the triangulation.

Lemma 4.2. Suppose T' and T are two triangles as above, and suppose
vg = aui + (v + Yvs. (4.2)

with v # 0. Suppose we know the coefficients of a spline s € S§(A) for all domain
points in the disk Dy, _1(ve) withm > r+1. Let ¢; := Cg:d—m,m—i be the coefficients
of p := s|7 on the arc ay, ,(ve) associated with the edge e := (v2,v3), and let

Ci = Cg:m—i,d—m be those of p := s|% on the same arc. Suppose that the coefficients
¢; and ¢; are known fori € {r —q+1,...,7} and that the coefficients co, ..., cr_2q4
are also known for some q with r +1 > 2q. Then the coefficients ¢; and ¢; are
uniquely determined for all 0 < 7 < r. Moreover, if C' is the maximum of the
known coefficients, then the computed coefficients are bounded by KC', where K
is a constant depending only on d, the smallest angle in the triangulation, and the
size of y~1.

Lemma 4.2 cannot be applied in the situation when v = 0. In this case the
edge e := (vy,v3) is called degenerate. The stability of the computation is also
compromised whenever e is near-degenerate in the sense that v is near zero. We

discuss near-degenerate edges in more detail in Sect. 7.

§5. Dual bases
Our construction of stable local bases will be based on the following

Lemma 5.1. [6] Suppose M is a MDS for a space of splines S which is a subset
of 8J(A) defined by smoothness conditions. For each {£ € M, let B be the unique
spline in S satisfying

ApBe =0¢q,  allneM, (5.1)

where ), is the linear functional which picks off the B-coefficient c,,. Then the set
{B¢}eem is a basis for S. We call it the dual basis corresponding to M.

Proof: To construct the spline B¢, choose ¢ = 1, and set all other coefficients
corresponding to n € M to zero. Then since M is a MDS, all remaining coefficients
are uniquely determined. Property (5.1) is obvious. O

For a given spline space S, there are generally many different minimal de-
termining sets M. Our aim in this paper is to design algorithms for choosing
minimal determining sets which produce stable local bases when applied to a space
S C 8Y(D).



Definition 5.2. Suppose B := {B¢}¢em is a basis for a spline space S C 89(A).
Then we call B a stable local basis provided that there exist constants £ and K
depending only on d and the smallest angle O in /\ such that

supp (Bg¢) C star®(ve) for some vertex vg, (5.2)
[ Belloo < K (5.3)

for all £ € M. A minimal determining set M for a spline space S is called a stable
local MDS provided that the corresponding dual basis B := {Bg¢}¢em Is a stable
local basis for S.

For (5.2), we recall that given a vertex v of A, star(v) = star’(v) is the union
of triangles sharing v, and starf(v), £ > 2, is defined recursively as the union of the
stars of the vertices in V Nstart=1(v).

Theorem 5.3. Suppose that M is a stable local minimal determining set for a
spline space S C 8Y(A). Then the dual basis B satisfies (1.2).

Proof: Let s € S. Then for any { € M, the corresponding coefficient c¢ is the
B-coefficient of the polynomial st := s|r, where T is a triangle containing £. But
then by the stability of the Bernstein-Bézier basis for polynomials (cf. Lemma 4.1
of [25]), we have |c¢| < C||sr||oo, 7 < C||5]|c0, where C' is a constant which depends
only on d. This establishes the left-hand side of (1.2) with the constant K; :=1/C
which depends only on d. For the right-hand side, we note that by Lemma 3.1 of
[25], for any triangle T', the number of basis splines B whose supports contain T is
bounded by a constant depending only on d and 6 (cf. the proof of Theorem 9.2
in [25]). Combining this with the boundedness of the basis functions completes the
proof. O

With an appropriate renorming, it can be shown that the dual splines also
provide a basis which is Lj-stable for 1 < p < oo, see Remark 13.7.

§6. Four-cells

In this section we construct minimal determining sets for spline spaces defined on
triangulations which consist of exactly four triangles surrounding one interior vertex
v. We call such a triangulation A, a four-cell. We are particularly interested in the
case where the vertex is singular (formed by the intersection of two straight lines)
or near-singular.

Suppose v1,...,v4 are the boundary vertices of /A, in counterclockwise order.
Let T; := (v, v;,vi41), for ¢ = 1,...,4, where vs = vy. For u+1 < £ < 2r, we
introduce some simplified notation for certain domain points on the ring Ry(v).
Let

i . Ty )
Qg5 = Ed—@,ﬁ—r+j—1,r—j+17 1 <7 < ny,

A .
9e,5 = gdil,£—r+ng+j—1,r—ng—j+1’ 1< g <y, (6.1)
i . T )
de:j T éhd—e,f—H—Zne—l—j—1,7~—2m—j-|-1a 1<3<r—-2n,+1,
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Fig. 1. The points in (6.1) for r =4, p =6, d = 14.

where
ng:=2r+1-—4£. (6.2)

Note that ny > 1 and r — 2ny +1 > 1. We illustrate this notation for r = 4, y = 6,
and d = 14 in Fig. 1.

Let 1 < k < 2r. We say that M C Di(v) is a MDS for S;*(A,) on Dy (v) if
setting the coefficients {ce : £ € M} to arbitrary real numbers, the coefficients {c; :
€ € Di(v) \ M} can be uniquely computed by using those smoothness conditions
defining S (A, ) that do not involve c¢ for £ ¢ Dy (v). Such an MDS will be called
stable if

max  |cg| < K max|cg],
EED (v)\M EeM
where K is a constant depending only on d and the smallest angle 0 in A,. By
Lemma 4.1 it is easy to see that D}"(v) is a stable MDS for S7*(A,) on Dy (v) if
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k< p.
It is not difficult to describe a stable MDS for S;*(A,) on Dy(v) for p+1 <
k < 2r if v is singular.

Theorem 6.1. Suppose A, is a four-cell associated with a singular vertex v. For
eachl = pu+1,...,2r, let

4
Mv,e = {a%,la SRR a%,nl} U U{gz,l’ SERE) gé,nl}’
=1

A (6.3)
Oy, = U{dz,l’ cre z,r—2n4+1}'
i=1
Then for each k = pu,...,2r,
k
Tp:=D(w) U ] [Mue U Oyl (6.4)
l=p+1

is a stable MDS for the space Sy*(A,) on Dy(v).

Proof: We proceed by induction on k. The result is clear for £ = u. Suppose we
set the coefficients c¢ of s € Sy (A,) for ¢ € T'y. Then by the inductive hypoth-
esis, all coefficients ¢g with £ € Dy_1(v) are uniquely determined by those with
£ €'y CT'y. We then compute the coefficients associated with domain points
on the ring Ry (v) using the standard smoothness conditions as in Lemma 4.1.
Namely, for each © = 1,2, 3,4, we first use the coefficients associated with the do-
main points g,’;,rll, e, g;'cfnlk, df;rll, e, d};frl_%k 41 and those in Dy_1(v) to compute
the coefficients corresponding to {fgik’o’k, .. "sgik,r—nk,k—wrnk}' After this only
the coefficients associated with domain points af 4,...,ay,, , ¢ = 2,3,4, remain

undetermined in Ry (v). We therefore use the coefficients corresponding to Rfl (v)
to compute the coefficients ¢ with £ € {a%,l, ceny a,%’nk}, and, proceeding counter-
clockwise around v, successively compute the coefficients with & € {ail, cees az’nk}
and § € {ai,l, cee aimk }. Note that here we have not used a portion of the smooth-
ness conditions across the edge e; := (v,v1) which involve the coefficients ce for
¢ € {a}c’l, . ..,a,lc’nk}. Nevertheless, these conditions must be satisfied since the
number of free parameters c¢, & € I'y \ [',—1, used in the above computation on
ring Ry (v), is equal to

dim ST (Ay) — dim ST (Ay) = 4(k — 7) + ng

(cf. Theorem 2.2 of [30]). Thus, we are able to compute all coefficients c¢, £ €
Dy (v) \ Tk, by applying Lemma 4.1 several times. By that lemma, the maximum of
the computed coefficients is bounded by a constant K times the maximum of the
set coefficients, where K depends only on d and the smallest angle in A,. O
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For later use in building stable local minimal determining sets for general spline
spaces, it is critical that the stable MDS in Theorem 6.1 contains the sets O, . We
now extend this result to arbitrary four-cells, although in fact we will use it only for
cells which are near-singular. In Sect. 10 we construct stable minimal determining
sets for supersplines on general cells. The construction there is simpler, but does
not guarantee that the resulting MDS contains the needed sets O, ;.

Theorem 6.2. Suppose A\, is a four-cell associated with a nonsingular vertex v.
For each p+1 < £ < 2r, let O, be the sets in (6.3), and let ny be the integer
defined in (6.2). Then there exists a set of 4ny, domain points

4
Mus € Aug = [{af ;5 U gi 0] (6.5)
i=1
such that for each k = pu,...,2r,
k
Tp:=DI()u | [MorUO,,] (6.6)
l=p+1

is a stable MDS for the space Sy*(A,) on Dy(v).

Proof: We proceed by induction on k. The statement of the theorem holds for
k = psince T\, = DTt (v) is trivially a stable MDS for Sy*(A,) on D, (v).

Fix p+1 < k < 2r, and suppose that I';_; is a stable MDS for S;*(A,)
on Dy_1(v). To construct I';, which is a stable MDS for S;*(A,) on Dg(v), we
need to supplement I'y,_; with an appropriate subset of the domain points on the
ring Ri(v). Using the fact that v is not a singular vertex, it is easy to see that
the number of edges attached to v with different slopes is at least three. Then
Theorem 2.2 of [30] implies

m = dim S;*(A,) — dim ¥ (Ay) = 4(k — 7). (6.7)

Thus, to get a minimal determining set I'y, for S;*(A,) on Dy (v), we need to add
to I'x_1 exactly m points on the ring Ry (v).

To simplify the discussion of how to choose these m points, we first reduce the
problem to one of considering splines whose coefficients are zero for all points in the
disk Dg_1(v). Given s € S;*(Ay), let Tg—1s be the spline in Sj(A,) constructed
in Lemma 6.4 below such that for each triangle attached to v, gr = Tr_1s|T
interpolates the derivatives up to order k£ —1 of s|r at v. Note that since s € C*(v),
Ti—1s is also in C#(v). Then the spline § := s — Ty_1s € Sy*(A,) has all zero
coefficients in Dy_;(v). Computing its coefficients on the ring Ry (v) will stably
and uniquely determine the coefficients of s on Ry (v), since by Lemma 6.4 the size
of the coefficients of Tx_1s on this ring is bounded by the size of the coefficients of
s in Dy_1(v).



We now focus on the set A, U O, of domain points a};’j, g,i’j, and d?c,j
lying on ring Ry (v). Clearly, if we are given values for the coefficients c¢ of § for
€ € Ay i U O,y i, then the remaining coefficients of § corresponding to domain points
on Ri(v) \ (Ayx U O, k) can be computed directly and stably from smoothness
conditions using Lemma 4.1.

Suppose v1,...,v4 are the boundary vertices of /A, in counterclockwise order,
and let e; := (v,v;) and T; := (v,v;,v;41) for i = 1,...,4, where for convenience
we identify v;44 with v; for all <. In addition, suppose the barycentric coordinates
of v;_; with respect to the triangle T; are given by

Vi—1 = TiVi+1 + 8V + {;v;,

for 2 = 1,2, 3,4. Note that ¢; = 0 if and only if the edge e; is degenerate at v. Since
v is assumed not to be a singular vertex, at least one ¢; is nonzero.

Let z = (21,..., 2401+4) be the B-coefficients of § corresponding to the domain
points

4
U{ak,D Tt ak,nv gk,17 Tt gk,n’ k,1r > dk,r—2n+1}'
=1

Here we are writing n := ny = 2r+1—k for ease of notation. Since the coefficients of
§ corresponding to domain points in Dy_1(v) are zero, the smoothness conditions of

order r—n—+1,...,r across the interior edges of /A, which connect the components
of z to each other can be written in the form
Hz=0, (6.8)
where
H¢ HY HY -1
-1 H$ Hj HY
= I HY HI HY ’
—I H$ H] HY
( pr ot
(T,
H} .= . : ;
(i
\Tzr (ri1)7“:_1ti T (7‘—1";+1) rir_n-l_lt?_l /
(r;f;l;l)fr;“—nti (:_—27;111) r-2n+lyn
H = : :
N



(r—n+1)r'{*—2nt?+1 . (r—n+1) ritz‘—n t'g—n+1

r—2n 7 1

d._
Hi . . . . ’

O L O L t
and I is the n x n identity matrix. We call a column of H a d-column when it passes
through one of the matrices H?. We define a-columns and g-columns similarly.
The matrix H has 4n rows and 4(r+1) columns where n < r+1. We claim that
it has full rank 4n. Indeed, the number of independent solutions 4(r + 1) — rank(H)
of the homogeneous system (6.8) must be equal to m, which implies rank(H) = 4n.
This means that there is a choice of 4n indices 1 < 37 < --- < 14y, < 47 + 4 such

that the determinant of the corresponding square submatrix H(iq,---,i4,) is not
zero. Moreover, it follows from Lemma 6.3 below that we can choose %1, - -, %4y
such that no column of H(i1,---,44,) is a d-column.

We are ready to describe the set M, . Denote by ¥ the set of indices of all
a- and g-columns of H, and let {i},---,4},} C X be such that
|det H(i],...,03,)| = max |det H(i1,...,%4n)|. (6.9)
1y--+5%4n EE
We take M, ; to be the set of domain points in A, ; which correspond to the
columns with indices in the set ¥\ {i],---,%;,}. Then M, U O, j is the set of
domain points on Ry (v) which correspond to the columns of H with indices in the
set J* :={1,...,4r +4}\ {iF, -, }-

Now assuming that the coeflicients {z;};cs+ of § corresponding to points in
M, kUO, i have been set, we may compute the remaining coefficients corresponding
to points in A, x U O,  from the nonsingular system

H(i, o nig) |0 | == )0 % HG), (6.10)
%, e
where H(j) is the j-th column of H. Using Cramer’s rule and taking account of
(6.9) and Lemma 6.3, we conclude that

> e e |zl det H(3Y, .. 851, 0,050 1, -, 04
‘Zz*‘f jedJ 9 (la : s ‘v ?a s ‘v4-1 ’ 4n)| SKmaX Zj|,
v |det H(i%,...,i,)| jET*
forv =1,...,4n, where K is a constant depending only on d and the smallest angle
in A,. This shows that the computation of z;:, ..., ziz s stable. O

We now state and prove two lemmas which were used in the proof of Theo-
rem 6.2. The first result concerns determinants formed from 4n X 4n submatrices

of H. Let . —n
(rr—;lz_l) T (r—2n-|—_|—11)

(7)o ()

10



A simple computation shows that

1! n!
n! (2n—-1)!

where C' is a positive constant depending only on 7 and n. It is well-known that this
determinant is nonzero for all choices of n, and thus the matrix R is nonsingular.

Lemma 6.3. Let H(iq,..., %) be adnx4n submatrix of H containing a nontrivial
d-column. Then there exists another submatrix H(j1,...,jan) With one less d-
column such that

|det H (i1, ...,04n)| < C |det H(j1,- .-, Jan)l, (6.11)
where C' > 0 is a constant depending only on d and the smallest angle of /\,,.
Proof: Suppose H (i1, ...,%4,) includes a nontrivial d-column i, = (r+1)(s —1) +
2n+j with 1 <4 <4and 1< j<r—2n+ 1. Note that the column is nontrivial

if and only if the corresponding ¢; is nonzero. For any 1 < 5 <7 —2n + 1, it is not
difficult to see that

g mo ()T
miG) =Y (B) T m),
k=1 i

(5]

where the numbers x;;- are determined from the nonsingular linear system

Rl : |= : . (6.12)
xkj] (r—2nr+1—j)

Since the k-th column of H] corresponds to the (r+1)(i — 1) + n + k-th column of
H, this implies that

n ) ti Jj+n—k
det H (i1, ..., ian) = »_ zlf! (7) det H,,
k=1 t

where

Hn = H(il, .. -;ip—la (’I‘+ 1)(’& - 1) +n+ li',,’ip+1, .. -;i4n)-
Since |r;| is the quotient of the areas of two neighboring triangles T;_; and T;, we
have by Lemma 3.2 of [25],

< K; < ‘7"7:|§K27 (613)
where K1, K5 depend only on 6. Therefore,
|det H (i1, ...,04n)| < Ks|t;]” max|det Hy|, (6.14)
K

where K3 depends only on d and 6. The result follows since |t;| < K4 where K} is
a constant depending only on 6. (In fact, |¢;| is quite small if v is near-singular.)
O

The following lemma was used in the proof of Theorem 6.2 above, and will also
be useful in Sect. 12 below.
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Lemma 6.4. Let /A, be a cell, and let 0 < r < k < d be integers. Given a spline
s € §j(Ay), let Tx—1s be such that for each triangle T attached to v,
Tk—18|T := the unique polynomial of degree k — 1 which matches

the derivatives of s|p at v up to order k — 1.

Then Ti—15 € S _1(Ay) C S5(A,). Moreover, if

sle =2 B, Teeasle =) & BY,
where Bg are the Bernstein polynomials of degree d associated with a triangle T,
then ég = cg for all ¢ € DI | (v), and

max |ér£|§K max |c;zr|, (6.15)
£ERY (v) £eD;, (v)

where K is a constant depending only on d.

Proof: Comparing cross derivatives of neighboring pieces of Tx_1s, it is easy to see
that it satisfies C" smoothness conditions across the interior edges of A,, and thus
is a spline in S;,_;(A,) C S5(A). Now fix a triangle T' := (v, v;, viy1) in A,. Then
by the well-known connection between derivatives and coefficients of a polynomial
written in Bernstein-Bézier form, it follows that ég = cg for all ¢ € D,:f_l('v).
Finally, to establish (6.15), we observe that since Ti_1s is a polynomial of degree

k — 1, its k-th derivatives are identically zero, and thus for all v =0, ..., k,
. oY% k—v
0= Dvi—UDUH_l—’UWC_lS‘T(U)
v k—v
d! (V)(k—l/) i1 —in AT
— _1) n—gzal
A Z ; ; ( d—j1—732,51,72
(d k) J1=032=0 J1 J2

It follows that

d! v\ (k—v o
~T k—j1—g2 AT
Ca—kpvk—v — _m Z ( ) ( . )(_1) 7 J2cd—j1—j27j1,j2’

0<i1 <vi 0<ja<h—v M1 J2
Jj1+ij2<k-1

which immediately implies (6.15). O

Example 6.5. Let r =5, 4 =8, d =17 in Theorem 6.2.

Discussion: Fig. 2 shows the domain points in this case, where the Do, disks
are shaded light gray and the D, disks are shaded dark gray. We concentrate on
the ring Rg(v), where ng = 2. The points in O, g are marked with the symbol ®
(except for the point d3,2 which we have marked with a @ for a later discussion).
In this case the set M, ¢ must contain eight of the sixteen points in the set A, o
described in (6.5). These eight points are chosen by the method of maximization
of the determinant in (6.9), and therefore depend on the exact geometry of the
cell. In Fig. 2 we show a possible constellation where we mark the eight points in
My 9N A, 9 with the symbol [e]. This leaves eight points which are computed by
the linear system (6.8). They are marked with boxed numbers 1 through 8. O
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V4 V3

U1 V2

Fig. 2. The points in M N Ry(v) for r =5, p =8, d = 17.

§7. Near-degenerate edges

We recall that an edge e = (vq,v3) shared by two triangles T := (vq, v, v3) and
T := (v4, v3,v2) is called degenerate at vo provided that the points vy, vy, v4 lie on a
straight line. An edge which is nearly degenerate is called near-degenerate, cf. [25].
We shall introduce the following quantitative form, where the choice of the constant
202 /7 is motivated by Lemma 8.2 below.

Definition 7.1. Suppose T := (v1,vs,v3) and T := (vy,vs,vs) are two triangles
which share the edge e = (vy,v3). We say that e is 6-near-degenerate at vo provided
that the smaller of the two angles between the edges (vs,v1) and (vq,v4) Is greater
than m — 26?% /7.

Let (a, 3,7) be the barycentric coordinates of v4 in terms of the triangle T,
i-€., V4 = avy + vy +yv3. The following lemma gives a lower bound on the size of vy
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in the case where e is not f-near-degenerate. This is important since it shows that
for such edges e, the process of computing coefficients by smoothness conditions
across e as in Lemma 4.2 is stable.

Lemma 7.2. Suppose the smallest angle in the triangles T and T is at least 0, and
that es := (v, v3) is not f-near-degenerate at vo. Then |y| > sin(6) sin(262 /7).

Proof: Let e; := (v2,v1) and ez := (va,v4). Then

B le1]|es] sin(a)

v

~ ey||ez| sin(8y)’

where a is the smaller of the two angles between e; and ez, and 6#; is the angle
between the edges e; and e;. It was shown in the proof of Lemma 3.2 of [25] that
under the above hypotheses, |es|/|e2| > sin(f). But then the result follows from
the fact that |sin(a)| > sin(26%/7) while |sin(f1)| < 1. O

§8. Near-singular vertices

A singular vertex is an interior vertex of a triangulation which is formed by the
intersection of exactly two lines. It is well known that singular and near-singular
vertices complicate the construction of stable bases for spline spaces.

Definition 8.1. Suppose v is a vertex where four edges meet. If all four edges are
0-near-degenerate at v, then we call v a f-near-singular vertex.

The following lemma will be used later.

Lemma 8.2. Fix § < w/4, and let A be a triangulation with smallest angle at
least 6. Then for any interior vertex v which is not f-near-singular, there is at least
one edge attached to v which is not f-near-degenerate at either end.

Proof: Let vy,...,v, be the vertices attached to v in counter-clockwise order.
We set T; := (v,v;,v;4+1) and denote by 6;, ¢;,w; the angles of T; at v, v;, v;41,
respectively. We distinguish three cases.

Case 1: n = 3. Consider the edge e; := (v,v1), and let a := ¢; + w3 and

B := 01 + 03. Then it is clear that 8 > m 4+ 20. Now a + 3 4+ w1 + ¢3 = 2. This
implies a < m — 40 since wq, ¢3 > 0.

Case 2: n = 4. Since v is not #-near-singular, there is at least one edge attached
to v which is not #-near-degenerate at v. Without loss of generality we can assume
it is the edge e; := (v,v;), and that the angle 3 := 0; + 0 is at least m + 202 /7.
Then arguing as in Case 1, we see that a := ¢1 + wy < 7 — 20 — 202/7r <7 -—26.

Case 3: n > 5. Consider the edge e; := (v,v1). Let «; := ¢; + w;—1 and
Bi == 0; +0;_1, for i = 1,...,n where we identify 6,; = 0;, wp+; = w;- We claim
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that at least three of the «; satisfy a; < m — 46/(n — 2). Indeed, if this were not
the case, then

40

n —

(n—2)r:Zai>(n—2)(ﬂ— 2)+49:(n—2)7r.

On the other hand, we claim that at most two of the f; satisfy g; > m — 6/2.
Suppose to the contrary that there are three, say (g, 0i, Bm. Then at least two of
these do not overlap, say (i, ;- But then there are n — 4 of the angles 6; which are
not covered by B or (i, which would lead to the contradiction

2n=0k+ 06+ (n—4)0>2r— 0+ (n—4)0 > 2.

Now nf < 27 implies 4/(n — 2) > 4/n > 26/n. We conclude that for one of the
edges, a; < m—40/(n—2) <7 —20%/mand 3; <7 —0/2 <7 —20%/xn. It follows
that this edge is not f-near-degenerate at either end. O

§9. Stable local bases for S;*(A)

Our ultimate aim is to give stable local bases for the general superspline spaces (1.1)
defined on arbitrary triangulations A of a polygonal set 2. However, in order to
illustrate the construction in a somewhat simpler setting, in this section we consider
the superspline space

Sy (D) :={s e 8j(A): se C*(v) for all v € V},

for d > 3r 4+ 2, where p is defined in (1.3). This is the special case of (1.1) with
py, = p for all v € V. The analogous construction for general superspline spaces
requires further analysis of cells (see Sect. 10), and is given in Section 11.

To describe a minimal determining set for Sj(A) we need some additional
notation. Let Vg and Vng be the sets of vertices of A which are singular and 0 a-
near-singular, respectively, where 6 is the smallest angle in A. Given a triangle
T, we divide the set Dy into various subsets. Let

C’T::{§i7;-k: i>r, jg>r k>r}

and
D;‘f(u) = {fgk ci>d—pl}
[5]i—1
AT(U) = U U{gg—2r+i—1,r—j,r—i+j+1}’

i=14=0
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Fig. 3. Domain points for r =4, uy = 6, d = 15.

with similar definitions for the other two vertices of 7. Associated with the edge
e := (u,v), let

Te)::{fi];k: kgr}
[5]i-1
= U U{gg—2r+i—1,r+1+jﬂ“—i_j}

i=14=0
L5]i—1
T
= U U{fr+1+j,d—2r+i—1,r—z’—j}

i=14=0

E7(e) i= FT(e) \ | DI (w) U DT (v) U AT (u) U AT (0) UGE(e) UG (e)|,

(9.1)

with similar definitions for the other two edges of T. Note that GT ((u,v)) =
G (v, u)).

As an aid to visualizing where these points are located, in Fig. 3 we show them
for the case where r = 4, 1 = 6, and d = 15. The points in the three disks Dg(u),
Dg(v), and Dg(w) are marked with the symbol @. The points in the three sets
AT (u), AT (v) and AT (w) are marked with stars, and the point in CT is marked
with a dark circle. The points in E7(e) for edge e := (u,v) are marked with
triangles, and the points in G% (e) and G%(e) are marked with the symbols ® and
and open circle, respectively. For clarity, we have not marked points associated
with the other two edges.
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Theorem 9.1. Let M be the following set of domain points:
1) for each triangle T, include the set CT,

2) for each edge e, include the set ET(e), where T is some triangle sharing e,

3) for each edge of a triangle T such that e lies on the boundary of €2, include the
sets GT (e) and G%(e),

4) for each vertex v € V, include DY (v) for some triangle T attached to v,

5) suppose the vertex v ¢ Vng is connected to vi,...,v, in counterclockwise
order. Let T; := (v,v;,v;y+1) and set Ty := T,, = (v, v,,v1) if v is an interior
vertex. Let 1 < 31 < --- < 13, < n be such that e;; is 0 A-near-degenerate at
either end, where e; := (v,v;) for i =1,...,n. Let J, := {i1,...,ix}. Then

a) include G (e;) for all i € J,,,
b) include ATi(v) for all 1 < i < mn — 1 such that i & J,,,

c) include AT (v) if v is an interior vertex,

6) for each vertex v € Vg, include the sets My ,+1,..., M, or constructed in
Theorem 6.1,

7) for each v € Vng \ Vs include the sets M, ;11,..., My 2, constructed in
Theorem 6.2.

Then M is a stable local minimal determining set for S;* (/).

Proof: We claim that M is well defined. In particular, if v ¢ Vyg, then by
Lemma 8.2 there exists at least one edge attached to v which is not 6a-near-
degenerate at either end. In the numbering of the edges in item 5) above, we can
choose this edge to be (v,v,), and the construction insures that for each interior
vertex v € Vng and edge e; := (v,v;) attached to it, if v; &€ Vg, then M includes
exactly one of the two sets AT (v) or G¥i(e;). The construction also guarantees
that for all vertices v € Vg, there is at least one triangle T with vertex at v such
that M contains the set AT (v).

To see that M is a determining set for S;*(A), we show that setting ¢ = 0
for all ¢ € M implies s is identically zero. Since for every vertex v of A the set M
contains DZ (v) for some triangle attached to v, using the smoothness conditions
and Lemma 4.1 we immediately see that all coefficients of s associated with domain
points in the disks D,,(v) vanish.

Next we compute coeflicients on the rings R,11(v) for all v. First we do the
vertices v which are not in Vyg. As in [25], we process arcs in a counterclockwise
direction around v, starting with an edge e such that the preceeding triangle T'
contains the set AT (v). These computations are based on the smoothness conditions
of Lemma 4.1, or (only if the corresponding edge is not -near-degenerate) those
of Lemma 4.2. Next we use Theorem 6.1 for each vertex v € Vg, and Theorem 6.2
for each vertex in Vs \ Vs. To do this, we need the coefficients corresponding to
the sets O, ,+1, but these will all have been set to zero or computed at this point.
We now repeat this entire process one ring at a time until we have completed all of
the rings up to Ra,(v) for all v.
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At this point we have shown that all coefficients of s corresponding to do-
main points in the disks Dy, (v) are zero. Since M contains the sets C7, the only
coefficients remaining correspond to points in sets of the form

E7(e)\ | Dar(v) U Do ()], 9.2)

where e = (v,u) is an interior edge. These coefficients can be computed from the
associated coefficients in the neighboring triangle (which will have been set to zero)
using smoothness conditions as in Lemma 4.1.

We have shown that M is a determining set for Sj(A). To see that it is
minimal, we simply check that its cardinality is equal to the dimension of Sj(A)
as given in (2.9) of [24]. Let

o= #47(0) = #GE(0) = #Gh0) = (7

d—3r—1
—_ T _
ne = #C —< 9 ),

ng = #D (v) = (M ;_ 2);

27“—,u+1>

ne := #ET (e) = ny — 4n,,

(r+1)(2d —4p+r—2)
5 )

TLf =

It is easy to check that the number of points chosen in item 6) is 5n, and in item 7)
is 4n,. This is n, points for each edge attached to v, and an additional n, points
when v is singular. It follows that

#H#M =n4V +n,2E+ S+ Ep) +ne.E + n.N, (9.3)

where
FE = number of edges of A,

Ep = number of boundary edges of A,
N = number of triangles of A,
S = number of singular vertices of A,

V = number of vertices of A.

Using the fact that 3N = 2E7 + Ep, (9.3) reduces to
#M =ngV +n,(S —3N)+nsE + n.N, (9.4)
which is the formula (2.9) in [24].
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This completes the proof that M is a MDS for Sj(A). We now claim that
the corresponding dual splines Bg satisfy (5.3) for some constant K depending
only on 6, i.e., M is stable. To see this, fix { € M, and choose ¢, satisfying
(5.1). The remaining coefficients of B¢ can now be computed from smoothness
conditions proceeding in the same order as described above in proving that M was
a determining set. But the computations in Lemma 4.1 are always stable, and
since we only apply Lemma 4.2 to edges which are not 6 a-near-degenerate, those
computations are also stable. The computations in the rings R,41(v),. .., Rar(v)
for a singular or a-near-singular vertex v are stable by Theorems 6.1 and 6.2.

Finally, we claim that for each £& € M, the support of the dual spline By is at
most star®(ve) for some vertex ve depending on . We divide the discussion into
four cases. Let My := M\ {{}.

Case 1: Suppose & € CT | where T := (v1, vz, v3) with edges e; := (v;,v;11). Then
by Lemma 9.2 below, the coefficients of By must be zero on all three disks D, (v;).

But since ET (e;) \ [Dzr (v;) U Day (v,~+1)] C My, the coefficients of B are also zero
on these sets, and we conclude that the support of Be is just the triangle T'.

Case 2: Suppose { € ET(e1) \ [Dar(v1) U Doy (v2)], where T := (vq,vq,v3) and
e1 := (v1,vg) is a boundary edge of A. In this case Be has zero coefficients on
the disks Do, (v;) and on ET(e;) \ [Da,(vj) U Doy (vj41)] for the other two edges
e;j := (vj,vj41) of T. It follows that the support of Be is just the triangle T'.

Case 3: Suppose & € ET(e) \ [Da,(v) U Dy, (u)], where e = (v,u) is an interior

edge shared by T" and a neighboring triangle 7'. Then arguing as in Case 2, we see
that the support of B¢ is TUT.

The situation is more complicated when £ lies in some disk Ds,(v). This is
due to the fact that when d < 4r + 1 the 2r-disks overlap, and nonzero coefficients
in one such disk can propagate to a neighboring disk as discussed in [25].

Case 4: Suppose £ € M N Dy (v). Suppose zi,...,2, are the points on the
boundary of star®(v) in counterclockwise order. Then Lemma 9.2 below shows that
the coefficients of B, are zero on the disks Dg,(2;). Now for each e; := (%, zi+1),
ETi(e;) \ [DQT(Z@’) U Day.(z;11)| C My for some triangle T; sharing the edge e;. It

follows that the corresponding coefficients are also zero, and we conclude that the
support of Bg is a subset of star®(v). O

The following lemma is used in the proof of the previous theorem.

Lemma 9.2. Let M be the MDS in Theorem 9.1, and let B¢ be the dual spline
corresponding to a { € M. Then B¢ can have a nonzero coefficient corresponding
to a domain point in a disk D, (w) only if § € Ds,.(v) for some v, and either v = w,
or w is connected directly to v with an edge (w,v) or by a pair of edges (w,u),
(u,v), where u is a O p-near-singular vertex.

Proof: It is clear from the first part of the proof of Theorem 9.1 that the coefficients
in a disk Dy,.(w) are computed from smoothness conditions which involve only
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coefficients in such disks. Hence, if £ is not in any disk Dy, (v), then B has zero
coefficients on all disks Do, (w).

Suppose now that £ € Ds,.(v) and that w # v is not connected directly to v
with an edge (w, v) or by a pair of edges (w, u), (u,v) where u is a fA-near-singular
vertex. Let wy,...,w, be the vertices attached to w and let e; := (w,w;) and
T; = (w,w;, w;41). Clearly, D, (w) C Mg and E(e;) C My for each 1 < ¢ < n,
where E(e;) is one of the sets E7i(e;) and ETi-1(e;). There are two cases.

Case 1: w € Vyng. In this case the four vertices wq, ..., w4 are all different from v,
which insures D, (w;) C M, for i =1,...,4. Moreover, none of the w; is -near-
singular since two 6 a-near-singular vertices cannot be neighbors. Since the edges
(w, w;) are all O A-near-degenerate at w, we conclude that M, also contains the sets
G;";"_l(ei), 1 <4 < 4. This implies that all coefficients of B¢ in Ds,(w) must be
zero. To see this, we first calculate the coefficients on the ring R, (w) from the
nonsingular system (6.10) in the proof of Theorem 6.2. We will get zero coefficients
if the right-hand side is zero, which happens as soon as the coefficients associated
with domain points in D:fl (w) and the sets M, ,+1 and Oy, ;41 in the theorem are
zero. Since D:‘fl (W)UMay ut1 € My, we only have to check Oy, ,,41. It is easy to see

that Oy 41 C U?Zl E(e;), and it follows that the coefficients in the disk D41 (w)
are zero. Repeating this process for each of the rings R, 2(w), ..., Rar(w), we note
that for each k = pu+2,...,2r,

“(wz U G T4 1(6;) U G (62) U ETi_l(ei) u ET: (ez)]

||C»J>

Since the coefficients corresponding to M are zero, and the coefficients correspond-
ing to the disk Dy_;(w) are also zero by the induction hypothesis, it is easy to see
that the coefficients associated with points in O,, ; must be zero, which in turn
implies that we have only zero coefficients associated with Ry (w).

Case 2: w ¢ Vns. By Lemma 8.2, there is at least one edge attached to w which is
not f-near-degenerate at either end. Without loss of generality we may assume it
is e,. Then AT»(w) C My, and the corresponding coefficients of By must be zero.
We now compute coefficients on the ring R, (w) proceeding in counterclockwise
order around w. For i = 1,...,n, we show that coefficients on the arc aj,,, ., (w)
are all zero. Assuming this holds for for all : < k — 1, we now show it for 7 = k.

a) If ey, is not Ox-near-degenerate at either end, then M contains AT+ (w) and
either E7# (ex) or ETk=1(eg). Hence the coefficients for points in af, ,; , (w) \

(Gf’“‘l( k) UGk (eg)) are zero, and we get all zero coefficients for points on
the arc aj, 1 ek( w) by Lemma 4.2.

b) If e is Oa-near-degenerate at one end and wy ¢ Vng, then My contains
all of the sets D, (w), D,(wg), Gr"(ex), GT*(ex) and either ETk(e;) or
ETr-1(¢;). Moreover by the induction hypothe51s the coefficients for points in
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Fig. 4. Blocking propagation.

aj 116, (W)Nay 4y ., (w) are zero, too. Then using the smoothness condition,
it follows that all coefficients associated with points on the arc aj, ,; ., (w) must
be zero (cf. Lemma 8.2 of [25]).

c) If wy € Vng, then wy is not connected directly to v with an edge (wg, v) or by a
pair of edges (wy, u), (u,v) with u a -near-singular vertex. Then, by Case 1,
all coeflicients of B associated with points in Ds,(wy) must be zero, and the
same argument as in b) shows that all coefficients associated with points on
the arc aj, ., ., (w) must be zero.

To complete the proof, we now repeat this process for each of the rings
Ryys(w), .., Ran(w). O

Fig. 4 illustrates Case 2b of Lemma 9.2 for r = 4, 4 = 6, and d = 14. Suppose
eq is Oa-near-degenerate at either wy or w. Then the coefficients corresponding to
points in the sets G7* (e2) and G &' (e2) are zero. We have marked those points with
the symbol ®. The coefficients associated with the points in ET (e3) and AT (w) are
also zero. They are marked with [e]land (©), respectively. Then using smoothness
conditions, we see that all of the coefficients corresponding to points marked with
© along with those in AT2(w) (marked with the number 4) must be zero. O

We conclude this section with an example to illustrate that propagation to
star3(v) can actually happen.

Example 9.3. Let A be the triangulation shown in Fig. 5, and let r =5, y = 8,
d=17.

Discussion: For ease of understanding, we shade the disks D, and D,, in dark
and light gray, respectively. Suppose M contains the set Dz(v) where T is the
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Fig. 5. Propagation to star®(v).

top triangle in the figure, and suppose £ is the point at the vertex v. Then B¢ has
support on all of the triangles surrounding v, and in particular, it has a nonzero
coefficient corresponding to the point R, (v)N(v,u). This point is numbered 1 in the
figure, and can be identified with the point marked with a @ in Fig. 2. As seen from
that figure, the nonzero coefficient at point number 1 can propagate to a nonzero
coefficient corresponding to the point in the set AT*(w) which is marked with a ®
in Fig. 2 and with the number 2 here. (We assume w; = u and wy = 2.) Assuming
both (w,wy) and (w,ws) are Oa-near-degenerate, we get further propagation to a
point in the set AT* (w) marked with the number 4. This set lies in star3(v) but
outside of star?(v). O

§10. A stable basis for S **(A,) on a cell A,

Before constructing stable local bases for S} (A) and for general superspline spaces,
we need to examine the superspline space S;;° (Ay) withr < p, < pon an arbitrary
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cell A,. Suppose that v is a vertex which is connected to the vertices vq,...,v, in
counterclockwise order, and let v,41 = v1. Let

A’U = {1—; = <'U,'U7:,/Ui+1>, 7,:]_,,n}

form a triangulation of the set

n
Q, = UTZ

=1

In this case A, is called an interior cell. We now construct a stable basis for
SiPe (D).
Let e be the number of edges attached to v with different slopes. Then by

Theorem 2.2 of [30],
pv+2 ,u—r—l-l PU—T+1
— 10.1
() () O ) e o

un—=r

o= Z (r+j+1—je)t. (10.2)
j=py—r+1

m = dim S (A,)

where

Suppose {;}i<, are the domain points associated with the cell A,. It is easy

to see that ,
-1

nczn[(“2 >+2,u—1}+1:n['u ;“]H. (10.3)
Given s € §;7*(A,), we denote the B-coefficient associated with &; by ¢; for i =
1,...,n.. Associated with each interior edge of A\, there are y — j + 1 smoothness
conditions to insure C” continuity across that edge, 7 =1,...,r,and p—r—k +1
smoothness conditions to insure CPv continuity at v, k = 1,..., p, — r. This gives
a total of

N ::n[<“;1) _ <“—72“+1) N (pv —2r+1>]
:nr[W] +n(pu —27'+1)

smoothness conditions to insure that s lies in Sﬁ’pv (A,). Note that ns < n.. These
conditions can be written in matrix form

(10.4)

Ac =0, (10.5)

T

where ¢ = (¢1,...,¢,,)" , and A is an appropriate ns X n. matrix.
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In general, the system (10.5) includes some redundant smoothness conditions,
and so n, :=rank(A) < ns. Indeed, since dim SoP (Ay) = ne — ny, it follows that

o () ) ()

(10.6)
[2u—r+1]+1 pu+2 + pp—T+1
=nr|———— — n — 0.
2 2 2 7
This implies that the number of redundant equations in (10.5) is
v + 2
Nyed = (p 2—{_ ) —1 + 0. (107)

Without loss of generality, we may assume that redundant equations have been
dropped, and that (10.5) is written in the equivalent form

[Al A2] C = 0,

where A; is an n, X m matrix and As is an n, X n,. matrix. We may also assume that
the columns of A (and the corresponding components of ¢) have been numbered
so that the determinant of A, has the maximal absolute value over all n, x n,
subdeterminants of A.

Algorithm 10.1. For each i = 1,...,m, let s; be the spline in S;**(A,) with

B-coefficients ¢ = (c1, ..., ¢y, )T chosen so that ¢; =1, ¢; =0 for j =1,...,m with
Jj #1, and ¢p41, ..., Cn, are determined from the linear system
Cm+1
Ay [ 1| =—A(d), (10.8)
Cn

c

where A; (i) is the i-th column of the matrix A;.
The splines {s;}/~, are clearly linearly independent since
)\jSi = 5i,j, ] = 1,...,m, (109)

where )\; is the linear functional which picks off the j-th B-coefficient. It follows
that they form a basis for S)#v(A,). We now show that their construction is a
stable process, i.e., for each 7, all of the coefficients of s; are uniformly bounded.

Theorem 10.2. Suppose s; is a basis spline constructed by Algorithm 10.1. Then
its B-coefficients satisfy

;| <1,  j=1,...,n (10.10)
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Proof: Fix 1 <i < m, and let ¢ = (cy,...,c,,) be the vector of coefficients of s;
as computed from Algorithm 10.1. Then (10.10) clearly holds for j = 1,..., m. Let
m+1 < 7 < ne. Then by Cramer’s rule,

_ det(/~12)
- det(A2) ’

]

where A, is the matrix obtained from A, by replacing the j-th column by —A; (7).
But then |c¢;| < 1 follows by the choice of A;. O

Note that this is a constructive algorithm for building dual basis splines. In-
deed, if we take M, to be the set of domain points corresponding to the m coeffi-
cients ¢y, ..., ¢y, which are set (as opposed to calculated) in Algorithm 10.1, then
obviously M, is a minimal determining set for S;** (A,).

A completely analogous algorithm can be used to create stable dual basis
splines for §Pv(A,) in the case where A, is a boundary cell.

§11. A stable basis for S;”(A)

In this section we combine the constructions of the two previous sections to create
stable local bases for the spaces of supersplines S;”(A) defined in (1.1) for all
d > 3r+ 2. As in [24], we assume that

ky + ky < d for each pair of neighboring vertices v,u € V,

where
ky := max{py, p}, vEV,

with p as in (1.3).
Given a triangle T' = (u, v, w), let

CcT.=CT \ [D,{u (u) U D,r‘:ﬂ (v) U D,::w (w)].

Associated with u, let 3
AT (u) == AT (u) \ Dy, (w),

with similar definitions for the other two vertices of T'. Associated with the edge
e := (u,v), we define

E" (e) := E"(e) \ [Dg, (u) U D, (v)],
with similar definitions for the other edges of 7.
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Theorem 11.1. Let M be the following set of domain points:

1) for each triangle T, include the set C~'T,
2) for each edge e, include the set ET (e), where T is some triangle sharing e,
3) for each edge of a triangle T such that e lies on the boundary of €2, include the
sets G (e) and G'%(e),
4) for each vertex v € V,
a) include the set DZ; (v) for some triangle attached to v if p, > p,

b) include the domain points in D, (v) corresponding to the stable minimal
determining set M, of Section 10 for S;**(A,) if p, < p,

5) suppose the vertex v ¢ Vng is connected to vi,...,v, in counterclockwise
order. Let T; := (v,v;,v;4+1) and set Ty := T,, = (v, vy, v1) if v is an interior
vertex. Let 1 < i1 < --- < ix < n be such that e;; is 0 A-near-degenerate at
either end, where e; :== (v,v;) for i =1,...,n. Let J, := {i1,...,ix}. Then

a) include G (e;) for all i € J,,,
b) include ATi(v) for all 1 <i < n — 1 such that i & J,,,

c) include A™ (v) if v is an interior vertex,

6) for each vertex v € Vg, include the sets M, x, +1,..., My 2, constructed in
Theorem 6.1,

7) for each v € Vngs \ Vs include the sets My g, +1,..., My 2, constructed in
Theorem 6.2.

Then M is a stable local minimal determining set for S;” ().

Proof: It is straightforward to check that M is a determining set for S;”(A). To
see that it is minimal, we check that its cardinality is equal to the formula (2.16)
in [24] for the dimension of S;*(A). Then locally supported dual basis splines B
can be stably constructed in the same way as in the proof of Theorem 9.1. O

§12. Stability and local linear independence

We recall (cf. [13,16,17,19,20,21]) that a set B = {B,},ez of basis splines for a
spline space S is called locally linearly independent (LLI) provided that for every
T € A, the splines { B, },¢x, are linearly independent on T, where

Yp:={v: T Csupp B,}. (12.1)

Since the classical univariate B-splines are both stable and locally linearly inde-
pendent (cf. Theorems 4.18 and 4.41 in [29]), it seems natural to expect that there
also exist bases for bivariate spline spaces which possess both of these properties
simultaneously. Here we have constructed stable local bases for the spline spaces
S5 (A) and their superspline subspaces, while star-supported LLI bases for the same
spaces were recently constructed in [19]. But these bases are different, and in fact
we have the following surprising result.
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Theorem 12.1. Given r > 1 and d > 3r + 2, there are triangulations such that
no basis for S} (A) is simultaneously stable and locally linearly independent.

Proof: Suppose B := {B,},ez is a stable LLI basis for S;(A) on a triangulation
which contains an interior near-singular vertex v. Following the notation of Sect. 6,
suppose v is connected to v1, va, v3, v4 in counterclockwise order. For each 1 <7 < 4,
let e; := (v,v;), and T; := (v, v;,v;41). Suppose

Vi—1 = TiVi+1 + S;v + t;v;,

and suppose that none of the e; is degenerate at v, i.e., t; # 0. For convenience,
we define oy, B;, i, i to be the linear functionals picking off B-coefficients corre-

sponding to the domain points ggizr,r,rvf§i2r,r—1,r+1’fgi2r,r+1,r—1’fgizr—l,r,rﬂ’
respectively.

For each 1 < j < 4, we claim that there is a unique spline S; € Sj(A) whose
only nonzero coefficients are

T

@;Sj =1, Sj:=—r;/(rty), 71185 :=r;71/(rtj1),
Bi—18; =158, B;S; =i 174155,

r

— -1 e et —1
,U,j_lsj' = T'T'J Sj’}’ij, /l,ij = TTj+18j+1’)/j+1Sj.

It can be verified directly that S; satisfies all C" smoothness conditions, and thus
belongs to S5(A). It is also easy to see that

supp S; =T;_1 UT; UTj4q,

and by a property of LLI bases (see [13,21]),

S;i=>»_ diB, (12.2)
IIEIJ'
where I; :={v: supp B, CT;_1 UT; UTj;1} for j =1,2,3,4. We now define

A

S = 7‘551 + Sg + ’f‘3_T53 + (T37‘4)_TS4.

The definition of barycentric coordinates impliesAtha,t rirorsry = 1. Using this fact,
it is easy to check that all of the coefficients of S are zero except for

A

1S =7y, aS:=1, azS:=r3", S = (rsre) "

A

(For example, 715 = r5v151 + (r3ra) 79184 = r1(—r§ + (rirsra) ")/ (rt1) = 0.) By
(6.13) and Lemma 4.1 of [25], this immediately implies

1S]le0 < K,
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where K3 depends only on d and 6.
In view of (12.2), we can write

S = Z a,B,.

vel1UlUlgUly,
By the assumption that the basis B is stable, we have
lallee < K7 1Sl < Ks/Kn,

where K is the constant in (1.2).

For each v, let B, = B, — T3,_1B,, where T3,_1B, € S5_1(Ay) CTSG(Ay) is
the spline constructed in Lemma 6.4 which interpolates the derivatives of B, at v
up to order 2r — 1. Then the B-coefficients of B, corresponding to domain points
in the disk Ds,._1(v) are zero. Moreover, since the basis B is stable, it follows from
Lemma 6.4 that the B-coefficients of B, corresponding to domain points on the
ring Ro,(v) are bounded in absolute value by a constant K4 depending only on d
and 0.

Since all of the derivatives of S up to order 2r — 1 at v are zero, Tor_15 = 0,

and we have (on A,)
S= Y wh.

veEl1UIUI3Ul,

Since the support of B, is a subset of the support of B, (on A,), it follows that
ag B, # 0 only if v lies in the set

I, :={v: supp B, =T1 UT, UTs}.

This implies
1=ayS = E a, as By, < #15|al| s ma;_x\agB,,|,
o vels
U€I2

Now clearly #fg < 3(‘1‘52), and hence there exists vy € f2 such that
‘OKQBVO‘ > K5 > O,

where K5 depends only on d and 6a.
Now consider the following C" smoothness condition across the edge es:

r—1
~ ~ _ ~ r L ~
a1 By, = rhas By, + rry e By, + Z (7“ ok 1) ry R gy kB,
k=1

where 77, is the linear functional which picks off the B-coefficient corresponding

to 5;12T,T+k+1’r_k_1 for k=1,...,7 — 1. Since a1 B,, = 0, this implies
~ 1 = T tg k ~ ) K5
B -3 —= B, | > |=| =,
"72 Uo‘ + r rt (7‘ _k_ 1) T ‘772,16 1/0| =1y r
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which is unbounded as ts — 0. On the other hand, since the B-coefficients 'ygB,,o,
N2.kBuy, k = 1,...,7 — 1, correspond to domain points on the ring Ry, (v), they
cannot exceed K, in absolute value, which leads to a contradiction and completes
the proof. O

Note that the above proof also applies to the superspline spaces S (A) when-
ever p, < 2r for some near-singular vertex v. On the other hand, if d > 4r 4+ 1 and
pv > 2r for all vertices, then the basis constructed in [24] is both stable and LLI.

§13. Remarks

Remark 13.1. It is well known [5-8,23,24] that the dimension of spline spaces
and superspline spaces (when p, < 2r) generally depends on the exact geometry
of the triangulation, and in particular may change as certain near-singular vertices
become singular. Thus, it may seem surprising that it is possible to construct stable
bases even though the dimension is not stable. This fact was realized already in
[1] for S3(A,), where A, is a four-cell associated with a near-singular vertex. The
spaces considered in [14] are also examples where stable bases were constructed
even though the dimensions were not stable.

Remark 13.2. For d > 3r + 2, algorithms for constructing star-supported bases
for S} (A) were presented in [23], and for general superspline subspaces in [24]. The
constructions there produce stable bases for » = 0, and for d > 4r + 1, p, > 2r for
r > 0. However, they are not generally stable if p, < 2r, since some of the basis
functions do not remain bounded for sequences of triangulations containing vertices
which become singular, even if the smallest angle in the triangulations is bounded
away from zero. If p, < p, then many other sequences of triangulations lead to
unbounded basis functions when two edges attached to the same vertex become
collinear.

Remark 13.3. Stable bases were constructed in [14] for the superspline space
Sy#(A), and in [25] for a certain special subspace SS of Sy (A), as a first step
in constructing quasi-interpolation operators with optimal approximation order.
Note that these constructions differ from our algorithm for S;*(A) described in
Section 11. Compared to the construction in [14], our basis splines have substan-
tially smaller supports in general (see also Remark 13.9). For the space &S the
algorithm in [25] produces basis splines with similar small supports, but does not
appear to extend to the full spaces S5(A) and S;*(A).

Remark 13.4. Well-known finite element results, see e.g. [31], imply that the
classical superspline subspaces of S8}(A) have stable local bases. In [18] we have
recently extended this construction to the full spline spaces S} (A) with d > 5. The
construction there uses nodal functionals (point evaluation of certain derivatives).
Here we have used the linear functionals A¢ which pick off the coefficients of the
Bernstein-Bézier form.
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Remark 13.5. No constructions of stable bases for spline spaces with d < 3r + 2
are known for general triangulations. It is also known [9] that for d < 3r + 2,
there are triangulations for which Sj(A) has no star-supported basis. However, it
is possible to construct stable star-supported bases for some values of d < 3r + 2
for classes of splines defined on special triangulations using macro-element tech-
niques. These include Clough-Tocher and Powell-Sabin refinements, for example.
See [10,11,26,27].

Remark 13.6. For multiresolution applications, it is important to work with
sequences of triangulations which are nested. In such cases, the corresponding spline
spaces Sj(A) are also nested, but in general the various superspline subspaces are
not. (See the discussion of this “super-spline effect” in [15,28].)

Remark 13.7. Following the proof of Theorem 5.3 (see also the proof of Theo-
rem 9.2 in [25]), it is not hard to establish

Theorem 13.8. Suppose M is a stable local MDS for a spline space S, and let
{B¢}eem be the corresponding dual basis splines. Given 1 < p < oo, let B¢ p :=
Agl/pBg, where A¢ denotes the area of the support of Be. Then {B¢ pteem is an

L,-stable basis for S, i.e., there exist constants Ki and K, depending only on d
and O such that

Killell, < I Y ceBepllpe < Kallellp (13.1)

EeEM

for all choices of the coefficient vector ¢ = (c¢)eem-

Remark 13.9. Our construction guarantees that the supports of the basis splines
are at most star®(v) for some vertex v in general. In some cases the supports can be
made smaller. An explicit construction of stable star-supported bases for C! splines
can be found in [18]. A careful examination of the construction here shows that for
r = 2, we also get star-supported stable bases. Moreover, the same holds for general
r > 2 provided d > 3r + |(r +1)/2| 4 1, since in this case Da,(u) N D, (w) = ( for
any two vertices u,w connected by an edge. For d = 3r + [(r + 1)/2], it can be
shown that our construction leads to star?-supported stable bases. Consequently,
star3-supported bases only appear for r > 5.

Remark 13.10. The proofs of Theorems 6.2 and 10.2 are based on Cramer’s rule.
This idea of choosing a submatrix with the greatest determinant was used already
in [14].

Remark 13.11. As in [25], the stable local bases constructed here can be used to
build quasi-interpolation operators with optimal approximation order.

Remark 13.12. The fact that stability and local linear independence are mutually
exclusive for spline spaces S;(A) with r > 1 was first established for » =1 in [18].
The proof was based on nodal determining sets. Here we have used the Bernstein-
Bézier form to establish the same result for general r» > 1.
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Remark 13.13. Our construction of a stable local basis can be easily adapted
to the spaces of splines and supersplines on a triangulation on the sphere or a
sphere-like surface introduced in [2], see also [3,4]. Indeed, since we are using
exclusively Bernstein-Bézier techniques, our construction and the entire argument

can be carried over in the same way as was done in [3] for the standard local bases
of S;P(A).
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