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ABSTRACT: The UK offshore wind sector has developed rapidly, but needs to develop even further to meet
the low carbon targets set by the government. In order to increase capacity and reduce costs, new offshore wind
farms will use larger and more complex technology that goes beyond current understanding and experience.
As a result, predicting the technical performance of offshore wind farms involves a considerable amount of
uncertainty, especially during early life when teething problems may arise. We present a model that allows
us to distinguish between natural variability and state-of-knowledge uncertainty when assessing the growth
in technical performance of offshore wind farms over early operational life. As such, the model can be used
to inform decisions to reduce uncertainties and to support effective risk management. To describe wind farm
performance, we use an indicator we call availability-informed capability measures the capacity of the farm to
generate electricity. We use an example based on a two-phase Monte Carlo simulation to illustrate the use of

the model.

1 INTRODUCTION

Offshore wind has a leading role in the future UK en-
ergy portfolio. Supported by the government, it has
attracted considerable investment in recent years and
has seen rapid growth. Nonetheless, in order to meet
the government’s ambitious low carbon targets, off-
shore wind capacity needs to grow even more. Build-
ing larger farms further away from shore will lead
to better exploitation of the wind resource and in-
crease capacity. However, this requires the develop-
ment of novel large-scale technology. This fact intro-
duces considerable technical risk and results in un-
certain costs, making investment in offshore wind ap-
pear more risky. As such, the development of off-
shore wind can be encouraged by an improved un-
derstanding of the state of knowledge risks in the per-
formance of offshore wind farms. There is a target of
97% availability, used in the financial agreements on
wind farms, which is a baseline for profitable perfor-
mance.

Modelling the performance of an offshore wind
farm of a relatively immature design over early life
is particularly important, because, typically, this is
a period of growth. Immature systems will typically

under-perform with respect to prior predictions of
long-term expected performance. In the case of large-
scale offshore wind farms, a number of design, man-
ufacturing and operating issues could make system
reliability lower than expected, while harsh weather
along with organisational issues can increase Sys-
tem downtime. As operating experience accumulates
and manufacturers and operators understand and ad-
dress particular technical and operational issues, per-
formance improves.

In this paper we present a mathematical model to
represent uncertainties in offshore wind farm per-
formance growth during early life. The model can
be used to support decisions to reduce uncertain-
ties and grow performance efficiently and effectively.
The model is a simulation-based model developed in
MATLAB. In this paper we present a simplified ver-
sion of the model, but its structure allows the repre-
sention of more complex situations.

This paper is structured as follows: Section 2 dis-
cusses issues relevant to the modelling of offshore
wind farm performance. In this section we distinguish
between aleatory and state-of-knowledge uncertainty
and we discuss the need to represent the latter in the
modelling of offshore wind farms. We discuss the cur-



rent wind farm modelling approaches and their limita-
tions, and we introduce an availability-related perfor-
mance measure that links technical performance with
energy production. Section 3 presents the conceptual
framework of the wind farm model disussed here and
the basic mathematical structure for modelling relia-
bility. A numerical example is used to illustrate the
usefulness of the model. Finally, Section 4 concludes
the paper.

2 RAMS MODELLING OF OFFSHORE WIND
FARMS

2.1 Modelling of uncertainties

Modelling the technical performance of offshore wind
farms involves considerable uncertainty. The stochas-
tic nature of the failure and restoration processes that
define the farm’s performance, the use of novel tech-
nology and the harsh environmental conditions are all
sources of uncertainty. Generally, uncertainties can be
categorised into aleatory and state-of-knowledge un-
certainties. Aleatory uncertainties relate to the natural
variability of the world. For example, different tur-
bines have fail at different times, even though they
may be of identical design. Aleatory uncertainty, by
definition, will always exist, and the best one can
do is to describe it appropriately. In the case of off-
shore wind farm modelling, one can use stochastic
processes to represent the aleatory uncertainty around
failure and repair behaviours of wind turbines. State-
of-knowledge uncertainties, on the other hand, relate
to the limitations of our knowledge about the world.
For example, the lack of operating experience rele-
vant to the novel offshore wind technology affects our
ability to model turbine behaviours. However, unlike
aleatory uncertainties, state-of-knowledge uncertain-
ties can be reduced as more information is accumu-
lated - for example through better testing before de-
ployment.

When modelling offshore wind farm performance,
it is important to account for both aleatory and state-
of-knowledge uncertainties. State-of-knowledge un-
certainties, unlike natural variability, are systemic.
This is because problems arising from state-of-
knowledge uncertainties affects all turbines in a wind
farm in a similar manner. The implication is that avail-
ability might be systematically higher or lower than is
being assessed currently. Since systematic lower per-
formance is associated with lower revenues, this sys-
temic risk affects the attractiveness of investing in off-
shore wind. However, once well-understood, one can
identify ways to actively reduce state-of-knowledge
uncertainties them by accumulating additional infor-
mation and use tools such as value of information to
value investment in testing. In general, distinguishing
between aleatory and state-of-knowledge uncertain-
ties is important because it allows decision-makers to
identify how much control they have over risk.

2.2 Current O&M models

Within recent years, there has been considerable in-
terest in the development of tools to model the Op-
eration & Maintenance (O&M) of an offshore wind
farm. TU Delft (Bussel 1997) has developed a Monte
Carlo method to yield estimates of farm availabil-
ity and of O&M costs over a predetermined period.
ECN Wind Energy have developed the O&M ECN
model, an analytical model to determine annual av-
erage costs and downtime of a wind farm (Rade-
makers, Braam, Zaaijer, & van Bussel 2003). The
model is implemented in MS Excel using the @Risk
add-in and supports comprehensive uncertainty anal-
ysis. ECN has further developed the Operations and
Maintenance Cost Estimator (OMCE) (Rademakers,
Braam, Obdam, & Pieterman 2009), a simulation-
based model developed in MATLAB designed to sup-
port logistics decisions during the post-warranty pe-
riod of the wind farm. Garrad Hassan and Partners
have developed the O2M (Optimisation of Operations
& Maintenance) computer model (Phillips, Morgan,
& Jacquemin 2005) which simulates the operation of
a wind farm to yield long-term average O&M cost es-
timates, whereas the MWCOST model (Rowe, Dello,
Frank, Brendling, & Grittner 2000) is a simulation
model developed initially for managing offshore oil
and gas projects and further adopted for application
in offshore wind contexts.

Current O&M models typically represent failure
behaviours of systems with mature reliability and as-
sume constant rates for wind farm subassemblies.
Moreover, to calculate wind farm downtime they typ-
ically consider aspects such as availability of main-
tenance equipment (e.g. hosting equipment), weather
conditions (based on the analysis of wind and wave
data) and duration of the required repair actions (as-
sumed constant for different failure modes). Current
O&M models are large Monte Carlo simulations that
are useful for optimising maintenance and controlling
logistics that focus on modelling aleatory uncertain-
ties only. The mathematical model presented here al-
lows decision-makers to carry out state-of-knowledge
analysis on the wind farm performance and it can
be used to inform decisions to reduce risk of perfor-
mance and grow capability more effectively and effi-
ciently.

2.3 Performance measure in terms of availability

For offshore windfarms the most important measure
of technical performance is farm availability. Indeed,
the O&M models discussed above yield estimates of
average availability. But what does ‘farm availability’
really mean? There are two prevailing definitions of
availability within the wind industry: turbine avail-
ability and system availability (Harman. 2008). Tur-
bine availability describes the fraction of time that the
turbine is able to produce energy, and it is the focus



of warranties. System availability is the proportion
of time that the entire farm delivers electricity to the
grid, by considering all possible interruptions. Neither
of these definitions are standardised, and the same
availability term may correspond to different defini-
tions (Feng, Tavner, & Long 2010) (Robb 2010).

The model presented here yields estimates of a
newly defined availability-related indicator that asso-
ciates technical performance with energy production.
This allows us to describe an individual turbine in
terms of multiple operating states and define clearly
the effect of degraded operation on overall farm per-
formance (e.g. when a fault in the pitch system can
lead to problematic alignment of the blades making
the turbine unable to generate electricity at its full
capacity). We call this indicator availability-informed
capability.

Consider a wind farm comprising of n wind tur-
bines and that each turbine has m + 1 operating states,
where state m is full technical performance and state
0 is out of operation. We use a stochastic process
{X;(t),t > 0} with state space {0,1,...,m} (where
X;(t) = j if turbine is in operating condition j) to
model wind turbine 7. We define the point availability-
informed capability at time ¢ to be the fraction
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where OPF;(t) is the maximum output power of tur-
bine ¢ and /P(t) is the turbine’s rated output power
(installed capacity). When the turbine is at a full op-
erational state (j = m) at time ¢, OP;(t) is equal to
the installed capacity /P;(t), as it would provide full
output if the wind were at full speed. The average
farm availability-informed capability over some inter-
val (71, 72) is given by
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We note that availability-informed capability de-
scribes the best performance that the farm could pro-
vide assuming that the wind were strong enough to
drive the turbines at full speed. The reason we do not
model energy output is that the objective of the model
presented here is to inform decisions to reduce tech-
nical risk. An energy output measure would include
epistemic and aleatory wind uncertainties hence com-
pounding different kinds of uncertainty and making
it more difficult to identify those key uncertainties
around technical risks than could be subject to the
control of the decision-maker.

SHIT

2.4 Interventions to grow performance and reduce
risk

The performance of repairable systems, such as off-
shore wind turbines, depends on two factors: the
failure behaviour of the system (reliability) and the
restoration behaviour of the system (speed at which
a system can go from an inoperable to an operable
condition). To achieve performance growth, one can
intervene and modulate either the turbine’s failure be-
haviour, or its restoration behaviour, or both.
We consider three types of intervention:

Innovations These are radical actions that change
the basic underlying properties of the system.
For instance, design modifications can overcome
design inadequacies while manufacturing faults
can be removed by improving quality proce-
dures.

Minor adjustments These are refinements of, for
example, operational activities, that have a grad-
ual impact on performance. For example, the
learning effect of operational experience which
could lower the probability of maintenance in-
duced failures.

Maintenance strategy The maintenance strategy
encompasses both the type of intervention
(i.e. preventive or corrective) and the effect of
intervention on the system condition (i.e. perfect
or imperfect repair).

The focus of this paper is on the modelling of state-
of-knowledge uncertainties on offshore wind farm
availability performance, rather than the modelling of
performance growth per se. In many cases, reducing
uncertainty on performance predictions is equally im-
portant to improving performance. For details on the
modelling of the effect of interventions on wind farm
performance see (Zitrou, Bedford, & Walls 2012).

It is worth mentioning that interventions may re-
sult not only in performance growth but also in risk
reduction. Consider the design process of an offshore
wind turbine. During the conceptualisation phase as-
pects of the operating environment are determined to
assess the stresses that will affect reliability. Issues are
identified and prioritised, to ensure that they are ad-
dressed by the design. Some of these issues are char-
acterised as low risk, and a conscious decision is made
not to address them during the design phase. When a
‘low-risk’ issue is in fact prevalent, or when a real
issue is omitted, the system is susceptible to out-of-
specification stresses, leading to under-performance.
This is one of the sources of state-of-knowledge un-
certainty for immature systems.

Investing in a thorough testing process can ensure
that all critical stresses are anticipated, allowing us
not only to lower, but also to better predict the risk
of overstress failures for subsequent versions of the
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Figure 1: Conceptual model of failure process for a turbine

design. Similarly, longer testing intervals allow de-
signers to gain better insight into e.g. damage accu-
mulation mechanisms. Appropriate defences can then
be built into the design, ‘delaying’ the wear-out pro-
cess. At the same time, increased understanding of the
physical processes allows for better reliability predic-
tions.

3 SIMULATION MODEL FOR AVAILABILITY
GROWTH

3.1 Conceptual framework

The model presented in this paper is a Monte
Carlo simulation model developed in MATLAB. The
model represents uncertainties on the projections of
availability-informed capability over the early life of
an offshore wind farm. Within this framework, the
reliability of systems (wind turbines) comprising the
farm are described in terms of non-decreasing rates.
Restoration behaviours are determined in terms of as-
pects such as ease of repair, ease of access to the
offshore site, availability of maintenance resources
like vessels etc. The model represents the initial dis-
crepancy between achieved and target performance
due to design, manufacturing or operating errors and
demonstrates how the former grows to meet the latter
through interventions (see Figure 1).

As described in Section 2.3, farm capability de-
scribes the best performance that the farm could pro-
vide assuming that the wind were strong enough to
drive the turbines at full speed. Wind resource is not
modelled explicitly, but the effect of weater is cap-
tured through the waiting time (amount of time the
crew waits until the weather is suitable for mainte-
nance operations). This feature of the model allows us
to consider the effect of weather on downtime with-
out compounding weather uncertainty with state-of-
knowledge uncertainty.

3.2 Mathematical foundations

Let T,15,... denote the successive times of events
for a turbine which began operation at time 7j, = 0. To
describe the alternating uptime-downtime behaviour

of the repairable subassemblies of a turbine we use
a marked point process. {7}, J, }n>1 Where J,, =1
when a failure occurs at 7}, and J,, = 0 otherwise (n =
0,1,2,...). Let N(t) be the number of failures and
M (t) the number of restorations in (0,%]. The Rate
of Occurrence of Failures (ROCOF) of the process is
defined conditionally as
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where H, is the subassembly history, that is, a col-
lection of everything we know about the subassembly
until, but not including, time ¢.

To describe the ROCOF we combine two concepts:
the inherent reliability characteristics of the turbine,
as described by the Force of Mortality (FOM) h(t),
and the effect of maintenance represented by the vir-
tual age of the turbine, v(¢). The FOM describes the
first time to failure of the turbine and virtual age rep-
resents its condition at some point in time. We have

M) = h(o(t), t>0. &)

For a new system we have v(¢) = 0. Therefore, perfect
maintenance ‘resets’ the virtual age of the turbine to
zero, whereas minimal repair sets its value to the one
it had just before failure.

Our model for failure behaviour is deliberately sim-
ple with a small number of parameters. It assumes an
early phase in which there is a constant force of mor-
tality, which ends when aging begins which follows
a Weibull shape. The parametric form of the FOM is
given by

A 1 <s
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where A is the FOM of the turbine under random fail-
ures and @ > 0 and b > 1 are the scale and shape
parameters respectively of the non-decreasing FOM
characterising the turbine’s wear-out phase. Time s is
the point when the turbine moves from constant to a
non-decreasing FOM.

For a turbine whose failure characteristics are as
planned, the rate A will be low, the time s outside the
early life window (Figure 2(a)), and the rate of in-
crease of the FOM will be slow. However, when the
design is novel there is a risk that design, production
and operation errors will cause the system to initially
under-perform. As illustrated in Figure 2(b), random
failures may be more frequent (A’ > \) and/or wear-
out may start prematurely (s’ < s) during early life.
Modelling the failure behaviour of an offshore wind
turbine involves considerable state-of-knowledge un-
certainty, including a non-zero probability that there
are substantial design and manufacturing issues. We
capture this uncertainty by introducing a set of possi-
ble FOMs, one of which is the planned FOM shown
in Figure 2(a), and selecting the initial FOM for all
turbines randomly from this set.



As state-of-knowledge uncertainty is knowledge-
based, it is possible to reduce it by learning more
about the model parameters. For instance, collect-
ing more information about the operating environ-
ment and the stresses that this imposes on a turbine
improves the estimation of the scale parameter a. A
better insight into e.g. the degradation failure mecha-
nisms leads to better predictions of time s. Collection
and analysis of early operation data or a more thor-
ough design phase provides insight into parameter p.
Major interventions and minor adaptations influence
some of the parameters of the FOM (e.g. a design
update may change the shape parameter a or/and the
‘phase-switching’ parameter s), whereas the learning
effect will impact on probability p (as operating expe-
rience accumulates, the chance of e.g. operating error
decreases).

h(®)
h(t)

Early life Early life
window window

(a) Target (b) Below target

Figure 2: Force of Mortality (FOM) of a wind turbine

The model presented in this paper uses Monte
Carlo simulation to propagate the state-of-knowledge
uncertainties in the turbine’s FOM’s to assess the
overall risk in availability performance growth of off-
shore wind farms during early operational life. This
model can provide insight into the effectiveness of in-
terventions and will inform management decisions to
buy down uncertainties and grow availability more ef-
fectively and efficiently.

3.3 Illustrative example

In this section we illustrate the use of the MATLAB
model to represent uncertainty in early-life perfor-
mance assessments of an offshore wind farm by using
a simple example. To distinguish between state-of-
knowledge and aleatory uncertainties, we use a Monte
Carlo approach with two nested ‘loops’: in the first
loop we consider the state-of-knowledge uncertainty
and in the second, nested, loop we consider aleatory
uncertainty. This way, we are able gain better insight
into the scale and source of uncertainties and inform
decisions to manage them appropriately.

Consider a farm comprising of N = 100 identical
turbines. Suppose that this is a large-scale farm at a
pre-construction stage, comprising of SMW turbines.
The interest lies in predicting the performance of the
farm over its early life, assumed to cover the first five
years of operation. Early life typically coincides with

the warranty period. As this is an illustrative example,
we are making some simplifying assumptions. We as-
sume that each turbine can be in one out of two op-
erating states (functioning or non-functioning). Tur-
bines are subject to corrective maintenance, and after
repair, they are returned to the condition they were
just before failure (minimal repair). Moreover, yearly
overhauls restore the turbines to an as good as new
condition. Overhauls are staggered, as it is not prac-
tical to take all turbines out of operation at the same
time. Finally, design updates are fitted to the turbines
during the summer months of years 2 and 3, whereas
manufacturing errors are removed during the summer
months of year 2 (innovations).

We note that the model can be easily modified
to capture more complex situations. For instance, if
required, each turbine can be broken down to sub-
systems (subassemblies like the gearbox or the yaw
system). Moreover, the use of availability-informed
capability as a performance measure as defined in
Section 2.3 allows us to extend the number of states
and capture partial turbine performance. Finally, the
use of the virtual age concepts allows as to model
other types of imperfect maintenance.

The turbines comprising the farm are assumed
large-scale machines of novel design. The turbine
manufacturer anticipates a reliability level of a RO-
COF of A = 0.1, or, equivalently, a Mean Time To
Failure (MTTF) equal to 10 years. We assume that
the average restoration duration of a failed turbine is
equal to 0.25 years. The stated reliability level can be
expected if there are no teething problems with the de-
sign, manufacturing or operation of the turbine. Nev-
ertheless, scaling up to such a large machine size im-
plies a large amount of innovation, introducing sig-
nificant risk. For instance, increased rotor diameters
impose high load levels on the turbine structure (e.g.
blades, tower, gearbox and generator).

To withstand the higher loads, the material proper-
ties have to be chosen correctly. If proper material is
used then the target reliability is achieved; however,
a design inadequacy such as the use of inappropriate
material can occur with a 20% chance (p; = 0.2) and
lead to premature wear-out. The state-of-knowledge
uncertainty on the wear-out mechanism given a de-
sign inadequacy is expressed with a probability dis-
tribution on the scale parameter a of the FOM given
in (5) (see Figure 3). In addition, the change in the
scale introduces a number of fresh manufacturing
challenges. Assume that there is a 0.1 chance that a
new turbine has a manufacturing flaw (p, = 0.1). In
case of a defect the turbine matures prematurely.

Our model is based on a two-stage Monte Carlo
simulation. In the first stage we have a loop with
ny = 100 iterations (first loop), for the purposes of
which we generate:

e 1, variables from the Bernoulli distribution with
probability p; = 0.2, where X;; =1 (j =
1,...,ny) if the material used is inappropriate
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Figure 3: FOM curves given a design inadequacy (inappropriate
material) corresponding to different values of the scale parame-
ter a.

e n; X N variables from the Bernoulli distribu-
tion with probability p, = 0.1, where X, (; ;) = 1
(2=1,...,Nand j =1,...,ny) if turbine 7 in
iteration j has a manufacturing fault

e n; variables from the uniform distribution
U(5,10), where a; is the scale parameter of the
FOM given a design inadequacy.

For each first-stage iteration, parameter vector

(X155 Xo1)s - - Xoynyj), 5]

determines a single curve for the turbine FOM. In
the second stage of the simulation, we have a nested
loop with n, = 100 iterations (second loop) for each
first-loop iteration. For each second-loop iteration we
calculate a probability distribution for the wind farm
time-averaged availability-informed capability, which
represents aleatory uncertainty only. Figure 4 gives an
example of a single empirical cumulative distribution
curve representing this aleatory uncertainty.
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Figure 4: A single run of loop one of the simulation representing
the state of knowledge uncertainty on the average availability
informaed capability of the farm.

The figure shows that, for this particular second
loop iteration, the farm is almost certain to have an av-
erage availability informed capability of at least 96%

but will reach 97.5% with a probability of less than a
half.

Figure 5 portrays the collection of the n, distribu-
tions obtained from running the first-loop simulation.
The spread of the distributions represents state-of-
knowledge uncertainty. The vertical dotted line rep-
resents an acceptable level of capability, in this case
equal to 97%. The distribution of the empirical cumu-
lative probabilities of each of these curves along the
vertical line determines the probability that this level
of performance will be achieved during the early life
of the farm.
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Figure 5: Multiple runs of loop one of the simulation represent-
ing the state of knowledge uncertainty on the average availability
informaed capability of the farm.

From the figure we see that the greatest state-of-
knowledge uncertainty around the average availabil-
ity informed capability is towards the central portion
of the empirical cumulative distribution function. This
is also close to our target performance level for the
farm.

We can take a vertical slice through the curves at
our dotted line to plot the distribution of the empir-
ical cumulative probabilities at the target level. This
shows the state-of-knowledge uncertainty, around the
probability of hitting the 97% target.

This histogram is given in Figure 6.
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Figure 6: A histogram representing the empirical probabilities of
not reaching the farm target capability in each of the simulations.

From the histogram we see that the probability that
the farm fails to make its target average availability
informed capability of 97% is between 0.2 and 0.4. Tt
is most likely to be between 0.25 and 0.3.



Now, suppose that extensive laboratory testing can
increase the likelihood that new turbine designs can
provide planned reliability levels. Investing in more
comprehensive testing before the turbine is deployed
can decrease probability p to 0.05. It is of interest to
see how additional testing impacts on availability per-
formance risk. Figure 7 represents the results of the
two-stage simulation.
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Figure 7: A plot of the epistemic uncertainty resulting from sim-
ulations with p reduced to 0.05.

It can be seen that the spread of the distributions
has been decreased, and investing in testing results in
better descriptions of the scale of the risk to the com-
pany. It also has the added advantage of reducing the
probability that the farm will fail to meet it’s target
performance.

We can compare the results using the two different
values of p more directly using a density plot. This is
given in Figure 8.
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Figure 8: A plot of the epistemic uncertainty at the critical avail-
ability resulting from simulations with p equal to 0.1 (right
curve) and 0.05 (left curve).

We can see more clearly from this plot the two
results we discussed for the previous plot. The den-
sity for the smaller value of p has a smaller spread
than that with larger p, indicating that the state-of-
knowldege uncertainty has been reduced. This den-
sity has also been shifted to the left indicating that the
probability of the farm failing to reach its target avail-
ability has also decreased. The fact that the densities
hardly overlap indicates that this decrease is signifi-
cant.

4 CONCLUSION

In this paper we presented a model for the representa-
tion of uncertainties on performance projection of an
offshore wind farm, particularly during the early oper-
ational years. The model determines farm availability
performance by modelling the reliability and restora-
tion processes and captures the effect of interventions
on the failure and restoration behaviours of the in-
dividual turbines. The focus of this paper is on the
modelling of uncertainties on wind farm availability
performance projections. This is particularly impor-
tant for offshore wind farms, where the use of novel
technology introduces a significant amount of perfor-
mance risk.

To demonstrate the use of the presented model, we
use a simple simulation example developed in MAT-
LAB. Based on a two-stage Monte Carlo simulation,
the model accounts for both aleatory and state-of-
knowledge uncertainties, and distinguishes between
the two in the context of assessing the performance
of an offshore wind farm during early life. This is
important as decision-makers can gain insight into
the scales of different uncertainties and inform deci-
sions to buy down uncertainties that are under their
‘control’, or potentially transfer risk to another party
through e.g. insurance covers or contracts. In the ex-
ample the model is used to explore how the scale of
uncertainties change if one invests in more compre-
hensive testing.

The work presented in this paper is part of a
larger model for assessing the availability perfor-
mance growth of offshore wind farms during early
life. The farm model will be used to understand the
factors that drive early availability and the effect of
modulating these, in order to inform decisions to grow
availability efficiently and effectively and manage un-
certainties and technical risk. The model will be com-
prised of a number of different FOM’s that describe
the multiple wind turbines sub-assemblies in the farm
and allow for the modelling of more complex mainte-
nance strategies, such as condition monitoring.

Future work involves eliciting expert judgement to
gain insight into the uncertainties related to reliabil-
ity issues relevant to offshore wind turbines. We en-
visage to develop a generic model for offshore wind
farm availability performance growth, that can be cus-
tomised to support decisions relevant to a particular
case.
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