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Abstract. Network modelling provides an increasingly popular
conceptualisation in a wide range of domains, including the analysis
of protein structure. Typical approaches to analysis model parameter
values at nodes within the network. The spherical locality around a node
provides a microenvironment that can be used to characterise an area of a
network rather than a particular point within it. Microenvironments that
centre on the nodes in a protein chain can be used to quantify parameters
that are related to protein functionality. They also permit particular pat-
terns of such parameters in node-centred microenvironments to be used
to locate sites of particular interest. This paper evaluates an approach to
index generation that seeks to rapidly construct microenvironment data.
The results show that index generation performs best when the radius
of microenvironments matches the granularity of the index. Results are
presented to show that such microenvironments improve the utility of
protein chain parameters in classifying the structural characteristics of
nodes using both support vector machines and neural networks.

1 Introduction

Connected topologies have emerged as a productive way of modelling a wide variety
of social, technical and biological systems. Among other domains, the paradigm has
been used to characterise social networks [I], protein structures and interactions
[3], genetic control [20], market economies [2I] and human and machine communi-
cation [2]. The power and flexibility of the network concept is highly adaptable as
a basis for explaining the overall behaviour of a system but an emerging theme of
such modelling is the potential for identifying specific regions in a network that
are of particular interest. Such hotspots might represent localised communities
in social networks [I] or periods of excessive workload in computer networks [28].
In the remainder of this discussion, we focus particularly on networks that
represent protein structural topology and hotspots that characterise points of
interaction between proteins. However the novel concept presented here (i.e. the
use of localisation to enhance the hotspot detection process) has potential for
application in other domains modelled by networks.
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The physicochemical properties of proteins provide useful information that
results in the identification of new drug targets. Virtual screening offers a
methodology for processing entire data collections such as the Protein Data
Bank (PDB)[9] with the aim of identifying useful new drug leads. However, it
is important to design the screening process in such a way that the maximum
benefit is extracted from the data available. An understanding of the structure of
proteins and their data representation can guide the design of effective screening
methodologies.

A protein is a chain (or combination of chains) of amino acid residues.
The chain consists of a backbone that includes the a-carbon atom from each
residue in the chain. Protein structures have been modelled as networks with
the residues representing the nodes of the graph and edges representing residue
interactions [3]. It is also possible to conceptualise nodes as discrete atoms in a
protein structure with the edges representing inter-atom factors such as distance.
The microenvironment that surrounds each a-carbon is characterised by all the
atoms in the network that fall within a defined sphere (Figure [Il). Where mul-
tiple chains are present, interactions may take place between the residues in
different chains. Such protein-protein interaction sites contribute to the function
of a protein. Consequently, prediction of the localities of interactions between
proteins can be a guide to function prediction for a particular site [I1]. Charac-
terising the locality (rather than a point) in a protein structure can be addressed
by evaluating microenvironments rather than the specific values associated with
particular locations.

Proteins are made from the polymerisation of amino acids into a linear chain
that is folded into a three dimensional (3D) structure. The folding pattern brings
the functional parts of the protein together and adjusts its configuration in
response to binding interactions. The positions of the atoms are determined by
processes such as X-Ray Crystallography. Over 70000 3D protein structures are
available from the PDB.

A microenvironment is the localised three dimensional spherical neighbour-
hood surrounding a particular node within a network. In this case the nodes
are represented by the a-carbons within a protein structure and the edges by
the distance between neighbouring a-carbons. Each microenvironment encloses
a variable number of nodes in the network, depending on the radius of the
sphere. Figure shows the location of amino acids that contribute to the
protein-protein interaction site of IHLU chain A (Bovine Beta-Actin-Profilin).
Choosing one particular amino acid (in the case of Figure the amino acid at
position 89 in the chain is chosen) and defining microenvironments of radius 4A,
10A  and 20A causes an increasing number of neighbouring amino acids to be
included in the microenvironment cluster as indicated in Figures to
The use of microenvironments as a basis for data mining requires an efficient
means of identifying data instances that are within a certain distance of each
other. As part of an effort to predict druggable sites on a protein (that is dis-
crete areas where a small drug molecule can regulate the action of the protein)
temperature factor can be used as an estimate of flexibility [32]. Protein analysis
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reveals the variation in 3D location of atoms in a protein as the temperature
factor (B factor) parameter. Proteins are not rigid structures. In fact, much of
the functionality of a protein depends on small positional adjustments. Tem-
perature factor gives an indication of the likelhood of these adjustments taking
place at each atom in the protein structure. The mean temperature factor of all
the atoms enclosed in a microenvironment provides a value for this parameter
that is based on the flexibility of the locality surrounding a single a-carbon in
a chain rather than the flexibility of a single point. This is a consequence of
the dependence of the protein topology on the plasticity of the local struc-
ture. Since any individual residue may be part of several spheres, pre-processing
nodes in the structural network provides an estimate of the protein’s behaviour
in the surrounding area rather than behaviour at the point represented by each
node. This is useful because the activity of a protein is influenced by the gen-
eral topology rather than point-by-point parameter values, that is in the general
context of networks, the structures behave as communities rather than a set of
discrete nodes. The temperature factor of a particular residue represents only
the flexibility at a specific node in the protein structure network. Other residue
parameters such as hydrophobicity[II] (the extent to which the residue repels
water) can be evaluated for microenvironments using a similar approach and
together these parameters can be used to classify the residues in a chain on the
basis of their likely contribution to protein-protein binding sites [10].

A range of processes are available for establishing classifications in datasets,
however support vector machines (SVM) and neural networks (NN) typically
span the range of prediction accuracies of such methods [10]. An SVM [I4]

(a) Chain of Amino Acids (b) Set of Atoms

Fig. 1. Simplified representations of a protein. a-carbons are black and the side chain
atoms are hollow. Microenvironment spheres are defined around each of the a-carbons
(three are shown).
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Fig.2. Amino acid residues clustered in the spheres of varying radii surrounding a
single residue centre in the protein-protein interface

is a supervised learning mechanism that generates a hyperplane separating data
in a training set. SVMs have been used in bioinformatic research to generate
optimal classifications of sites on protein chains [I3]. Artificial neural networks
represent an alternative approach to classifying input data. They provide a
means of deriving a functional model to separate classes in the input data. As
with SVMs, NNs are able to classify non-linear data [33]. By training SVMs
and NNs with sets of appropriate data, the likely positions of protein-protein
interaction sites in a protein chain can be distinguished [24].

There are many possible microenvironment configurations that might be
useful in classification nodes within the network. It is not feasible to pre-compute
all the possible combinations for any extensive network. Generating microen-
vironments on-the-fly provides sufficient flexibility and at the same time can
support rapid exploration of data. Three dimensional (3D) grid methods have
long been known to provide a basis for accelerating the performance of process-
ing spatial data [23]. However in the scenario of varying the level of abstraction
of microenvironment data the most appropriate dimensions for box indexes are
uncertain.
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The contribution of the work described in this paper is to identify the best
way of generating an on-the-fly index for the rapid association of nodes within
a network. This methodology is then used to demonstrate that the assembly
of clustered data makes a significant contribution to predicting hotspots in
protein structure networks. In turn, this introduces the general approach of
network analysis using localised topological summaries. The rest of the paper
is organised as follows: Section [2] establishes the context of related approaches.
Section[3 describes index generation and its use in the microenvironment assem-
bly algorithm and presents the experimental work, the results of which are set
out in Section @ The paper concludes with an evaluation of the results and the
potential for further work in Sections [l and

2 Related Work

Improvements in the performance of processing geometric data can be achieved
by using specialised data structures. Scenes can be represented in hierarchi-
cal trees of bounding volumes [22]. kd-trees are a common structure [§] and
their traversal allows intersections to be calculated or distances to be measured.
When working with point data, Voronoi diagrams [5] can be used to divide
the n-dimensional space into sectors around each point. Using this approach,
the entire space within each sector is closer to its parent point than to any other
point. This is useful for queries that determine nearest neighbours. In apply-
ing these principles to processing molecular data, early recognition of the power
of quantising the space of individual molecules came from Leventhal [23]. This
approach was further contextualised by Bentley [7] who assumed a quantisation
based on search radius. The approach described in the current work explores the
assumption that the optimum cell size of the quantisation is the same as search
radius. Establishing the optimal approach is an essential step in providing a
suitably efficient method of microenvironment assembly.

Residue interaction graphs have been used to characterise protein structures
[3] with a view to classifying active sites. Hotspots in both social networks and
networks representing protein structures have been found to play a key part
in the development and persistence of structural aggregations in their various
domains [I5]. Network analysis tools have been identified as having considerable
potential for identifying targets for drug development [I8]. Fixed size microen-
vironments have been used as a basis for k-means clustering with a view to
exploring protein structure [29]. This approach has also been successful in iden-
tifying calcium binding sites [6]. The prediction of protein-protein interaction
sites has been explored by using combinations of attributes and SVM classifiers
[30/11135]. Typically these lead to prediction accuracy in the region of 60%-70%.
Tuning the algorithm by manipulating nearest-neighbour selection produces a
prediction accuracy of 73% [31]. Neural networks have also been used to predict
protein-protein interaction sites from combinations of physicochemical param-
eters [I7] and are reported to return accuracy in the region of 70%-72%. The
use of microenvironments has been found to provide a basis of screening protein
data for the presence of allosterically active sites [12].
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The novel idea presented here is that pre-processing network data by the con-
struction of parameter aggregates within microenvironments improves the ability
to identify hotspot nodes. This contrasts with previous research that focuses on
point parameter data. The effectiveness of this approach is demonstrated using
both SVM and NN classifiers in the prediction of protein-protein interface sites.

3 Prediction Model

Microenvironment assembly determines the atoms that lie inside the sphere
that is centred on each a-carbon in a protein chain. The simple approach of
calculating the Euclidean distance between all residue/atom pairs is inefficient
in a network that may consist of thousands of nodes. Cell partitioning [7] is
used to pre-organise data so that only nearby atoms are considered as candi-
dates during microenvironment assembly. Generation of the cell index is carried
out on-the-fly having previously established the overall maxima and minima of
spatial coordinates in the collection of protein structures and this is used to pro-
duce a 3D grid. The coordinates of each atom associate it with a particular cell in
this grid. The index identifies a candidate set of atoms that can be formed from
the surrounding cells, immediately ruling out distant atoms from consideration.
Only atoms within a reasonable distance of the sphere centre become candidates.
The distances between the candidates and the sphere centre are calculated and
the appropriate atoms included in the sphere. The index can be tuned by alter-
ing the size of the 3D cells and Figure [Blshows how the candidate set is narrowed
down by choosing only the cells that intersect with the sphere. Figure [4] gives a
formal description of the index generation algorithm. Given the importance of
this step in on-the-fly assembly of microenvironments, it is necessary to assess
whether the optimal cell edge length is the same as radius size or whether a
sub-multiple (L/n) of radius size would be more appropriate.

Y
A 7 % 71
7 // /V
2NN, % U

(a) Cell Length < Radius  (b) Cell Length = Radius (c) Cell Length > Radius

Fig. 3. The relationship between sphere radius and cell length. All of the nearby boxes
that intersect with the sphere (or any sphere centred in the same box) are highlighted,
and all the atoms from these boxes are candidates for inclusion in the sphere.
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: Create a 3D array of cells encompassing all elements in the PDB.
: for each atom in the chain do

Determine which cell this atom belongs in.

Place a reference to the atom in this cell.

: for each sphere centre in the chain do

Create an empty sphere.

Determine which cell this sphere centres in.

calculate the length of the shaded area by

sphere radius
2 x |— box length —‘ +1

© 0N

10:  for each cell in the shaded area do

11: for each atom in the cell do

12: distance = /Az2 + Ay? + Az2

13: if distance < sphere radius then

14: add this atom centre to the sphere

Fig.4. 3D grid atom allocation algorithm

At one extreme, a single large cell will place all the atoms together, effectively
removing any benefit from the index. At the other end of the spectrum, if the cell
size is too small each atom will have its own box, negating the advantage. Figure[3]
suggests that choosing a cell size that matches the sphere radius constrains the
candidate space but that sub-multiples (L/2, L/3 etc.) might be more effective.
A cell length equal to the microenvironment radius maximally constrains the
candidate space volume for the smallest number of candidate cells. This volume
can be constrained further by using a greater number of smaller cells. Adding
another layer of cells reduces the optimum cell size to L/2. A further layer
reduces it to L/3 and cell lengths for these volume minima can be generalised
to L/n.

Experimental work was carried out to evaluate the optimal approach to
indexing Protein Data Bank (PDB) data [9] with a view to rapid assembly of
microenviroments. A second set of experiments evaluates the effect of physico-
chemical parameter variation on the detection of hotspots within protein network
structures.

3.1 Index Configuration

Experiments were run to configure the 3D grid index in the context of the col-
lected data structures from the PDB. Microenvironments were then assembled
using varied sphere radii and protein sizes in order to allow a comparison. The
experiments were conducted on a 3 GHz Intel Pentium 4 processor with 1 GB
RAM, running Zenwalk Linux 6.2. The algorithms were implemented in Java 6.

To obtain a representative test dataset, the protein chains present in the PDB
were divided into groups by chain length (1-50 residues in the first group, 51-100
in the second, etc.) and one chain was chosen at random from each group. The
final dataset is shown in Table [l
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Table 1. Set of protein chains used for benchmarking the index algorithms

ID Ch Len ID Ch Len ID Ch. Len ID Ch. Len
1DOM A 18 1AZP A 66 2I8T B 149 2IX3 B 972
1BGL F 1021 3DEE A 197 1J2Q B 223 2QPQ C 296
2QN1 A 813 2VC9 A 882 IMIQ B 327 20F6 B 400
1JRP G 450 1UYT A 681 IN70 A 721 2HLD S 480
1ZPU E 529 1EFK A 553 2PPB M 1119 1WZ2 B 948
2AHX B 615 1JRP B 760

The performance evaluation of microenvironment assembly was carried out
by repeating the algorithm 1000 times. In order to make sure the compiled
and optimised execution was measured, the 1000 measurements were repeated
until two consecutive measurements were within 10% of each other. To prevent
the benchmarked code being optimised out by the compiler, a summation of
the sphere results was calculated and output to the console after the time
measurements were complete. To determine the best cell size, the protein size
was kept constant. Chain E from 1ZPU was chosen since it is in the middle of
the range of chain length, which fixed the number of residues at 529.

An index using cells that are too small will take a long time to create while
very large cells will approach O(n?) in terms of microenvironment assembly
performance. Somewhere between these two extremes must lie the maximum
efficiency. The experiment was run at sphere radii of 4, 5, 6, 7, 8, 9 and 10A. For
each sphere size, the cell size was varied from 4 A to 20 A in steps of 1A. The
best cell size was deduced from the above experiments and used to benchmark
the cell index at sphere radii of 4, 5, 6, 7, 8, 9 and 10A for each chain length in
the dataset.

3.2 Aggregating Parameter Values

Having established the optimal approach to microenvironment assembly,
experiments were conducted to examine the effect of the approach on the
classification of nodes within the protein structural network. In this case,
the intention was to identify hotspot nodes representing those residues that
take part in protein-protein interactions. Figure [ illustrates the basis of this
approach. In this case, temperature factor is shown for each position in a sample
chain (1HLU chain A). The sites of the protein-protein interface are indicated
and can be seen to be distributed over peaks and troughs when using a 0A sphere
(i.e point data). In the case of the 40A dataset, the protein-protein interaction
sites have coalesced in troughs in the distribution. This suggests that particular
features of the temperature factor distribution are evident at some microenvi-
ronment radii but not at others. These variations in parameter distributions are
of use in classifying nodes in the network structure of residues.
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Table 2. Sample dataset used for benchmarking the microenvironments

1D Chs.|ID Chs.|ID Chs.|ID Chs. [ID Chs. [ID Chs. [ID Chs. [ID Chs.
1AHWB C |[1AVG H1I |[1AY7 A B|1AZS C B|1B6C A B|1B7Y A B|1BDJ A B|1BI7T A B
1BMQA B |1BP3 A B|1BVK A C|1BVN P T |1D4V A B|1DAN L U |1IEBD A C|1EFU A B
1ETH A B|1IGFWA B|1GLA F G |1GOT B G|1HJA B |1IHLU A P |1IRA X Y |1IKKL A H
1L0Y A B|INOC A B|1IPDK A B|1QBK B C|1SMP A1 |ISTF EI1 (1UDI EI |1IUEA A B
1VAD A B|1ZBD A B [2PCC A B|3EZE A B|7CEI A B

Table 3. Dataset parameters Table 4. Dataset size

Parameter Characteristic Parameter Count

Temperature factor (B-factor)[The flexibility of the protein Total residues 24526
at a particular atom. Exposed residues | 7977

Druggability The likelihood of targetting Interface residues|4104
by a drug-like molecule.

Hydrophobicity The extent to which the
residue repels water.

Total atomic weight The local size at a node.

Residue number Position in the protein chain.

To verify this assumption, a set of chain pairs with prior established
protein-protein interaction sites was identified [4]. This set was further refined by
removing chains containing multiple models (i.e. where variations in the configu-
ration of the protein were possible) and those identified as containing significant
redundancy [24]. Lastly, chains that had no matching pair subsequent to these
steps were also removed. Following this process, the sample set consisted of those
chain pairs shown in Table 2

The residues in each chain of this set were then classified on the basis of
their proximity to residues in the complementary chain. The occurrence of two
a-carbons from complementary chains within a range of 12A was taken as
an indication that the respective locations of these residues represented a protein-
protein interaction site [24]. The a-carbons in each chain were also classified on
the basis of their accessible surface area (ASA) [19]. Surface residues were taken
to be those with an ASA more than 20% of the surface area. The dataset chosen
is summarised in Table 4l

A set of parameters indicated by previous work [16l26] was then derived for
each surface residue in each chain. The parameters represent orthogonal charac-
teristics of nodes within the network as shown in Table Bl Microenvironments of
radii 0A to 50A were used to produce a mean value for each of these parameters
for each node using the approach explained in subsection B.Il For temperature
factor and total atomic weight, each atom in the microenvironment provides a
contribution to this mean. For other parameters used, each residue included in
the locality provides a contribution.

This approach generated a vector of values that were used with both neural net
(NN) and support vector machine (SVM) classifiers. Non-overlapping training
and test sets were generated by assigning alternate microenvironments to each of
these two sets. The LIBSVM package [13] was used to develop a support vector
machine classification model using the training set of residues. In the course of
generating the classification, cross-validation was carried out within the training
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set. A non-linear function provided the best separation for distinguishing protein-
protein interaction sites using an SVM. Neural net classifiers were generated and
tested using Matlab [25] and the same training and test sets as were used to
generate the SVM classifications. As with the SVM classifiers, cross-validation
was carried out within the training set during generation of the NN classifiers.

4 Experimental Results

The performance of microenvironment assembly based on a properly configured
cell index is shown in Figure [l The maximum number of amino residues in a
single chain in the PDB is 4128, suggesting that index generation will be around
0.6 seconds in the worst case.

It can be seen from Figure [ that the most efficient cell size is equal to the
sphere radius. As the cell size increases from this global minimum, the time
for the algorithm to run increases steadily. This is consistent with the larger
cells holding progressively more atoms and therefore requiring more distance
calculations. As the cell size decreases from the global minimum, the trend is for
the time to increase. This is because more cells are required and their creation
becomes the most time-intensive step. However Figure[7l also shows local minima
at half the optimum cell size. Consider determining the sphere at a 7A radius.
When the cell size is also TA, the candidate list is drawn from the central cell
and all of the surrounding cells. If the cell size is decreased to 6A we still have
to check the central cell and the surrounding ones. However, now the range of
the sphere can include atoms up to two cells away. If we go below 3.5A (half
the optimum box size), we have to consider atoms three cells away. One could
expect another local minimum at 1.75A, another at half this, and so on. The
results from the optimum configuration are shown in Figure8 Microenvironment
assembly using the 3D grid index differs in that the speed varies with the sphere
size.

The impact of changing the radius of the sphere on the identification of
hotspot nodes in the context of their contribution to protein-protein interfaces is
shown in Figures[@ and [[0l The precision and recall of both SVM and NN show
a gradual increase over the sphere radius from 0A to 40A. This variation can be
seen more clearly in the context of the prediction accuracy shown in Figure
The SVM approach shows a peak accuracy of about 80% occuring at a radius
of 40A. NN accuracy also peaks at the same radius. To explore the distribu-
tion of data contributing to these predictions, Figure [[1] shows the coefficient of
variation (the ratio of standard deviation to mean) for each parameter over the
radii chosen. Figure shows the impact of isolating the contribution of each
parameter to the SVM prediction. Here the microenvironment radius was fixed
at 40A except for the indicated parameter, which was varied in the range 0A
to 50A.

At lower microenvironment radii, the temperature factor provides the
dominant component of the overall accuracy of the predictive model. This cov-
ers increasing radii upto about 30A. Between 30A and 50A other parameters,
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particularly hydropathy play an increasing role in contributing towards the
accuracy of the prediction. In all cases however, the use of microenvironments
as the basis of generating classifications show evident improvements over the use
of data points that do not take into account the neighbourhood surrounding the

a-carbon.
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5 Discussion

The experimental work verifies the assumption in constructing spheres in net-
work structures, that the most appropriate cell length matches sphere radius.
This result provides confidence in the optimal performance of microenvironment
assembly, which is necessary for locating good classifiers within the search space.
The on-the-fly approach is efficient enough to remove the necessity for materialis-
ing microenvironments. This improves the utility of the method since it removes
the need for predicting the combinations of parameters that can distinguish
hotspot nodes. If a user interface must respond to a mouse click or a keystroke
within 0.1 s, the 3D grid index continues to meet the criteria up to about 1200
residues for the higher sphere sizes and over 2000 residues for sphere sizes of
7A and under. This makes it feasible to build a direct manipulation interface
to large networks such as those represented by the PDB and provides support
for interactive data mining. The experiments show that the performance of the
index depends on sphere size, with larger radii making the index less efficient.

Sphere size also has an effect on the use of microenvironments as a basis
for classifying hotspots in the network, in this case characterising residues in
terms of their contribution to protein-protein interface sites. Microenvironments
provide a more effective quantification of the impact of parameter values at a
particular site than is available by using localised point values. This effect is
visible in predictions based on SVMs and NNs using the same set of parameter
values. The benefit of using microenvironments as input into SVMs is significant.
The accuracy of the prediction reaches 80% at a sphere radius of 40A. This
compares favourably with results in the range 60%-73% that are reported in the
literature [B0/TTI3531]. Using network centrality analysis on residue interaction
graphs predicts active sites with a accuracy of 70% [3]. An equivalent effect is
noticeable in the precision and recall of SVMs operating on the test set. Precision
and recall at 40A are 63% and 65% respectively, compared with prior reported
equivalent values of 46% and 67% [30]. In this context, neural networks return
lower values for precision, recall and accuracy, a point already noted in classifiers
developed to address other domains [10].
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In the context of network representations of protein structures, the improve-
ment in prediction has the potential for focusing the selection of appropriate sites
for targeting drug design aimed at protein-protein interfaces. The longer term
consequences are cost reductions during in vitro assay. An additional benefit is the
potential for scanning a large collection of protein structural data (e.g the Protein
Data Bank) with a view to identifying the sites in all the chains where protein-
protein interactions may be taking place. Bulk scanning such as this necessitates
the development of the optimised indexing approach described in Section Bl

The coefficients of variation suggest that the parameters chosen are subject to
considerable variation in microenvironments that range from 0A to 20A. Beyond
this, hydrophobicity and druggability show less variation. The results reported in
Figure [I2] suggest that despite restricted variation of these parameters beyond
20A, they still make an important contribution to the prediction process at
microenvironment radii of around 40A.

This work has focused on the use of 3D coordinates to model protein
structures as an example of nodes located within a network. Other approaches
to protein modeling include representation as graph structures with edges
typically denoting the spatial proximity of atoms within the structure [27].
In this idiom, microenvironments are an appropriate way of characterising the
physicochemical topology of proteins because they can be parameterised to span
variable sub-graphs within the chain. The utility of this approach is demon-
strated in the increased classification accuracy for microenvironment centres.
Other applications of graph theory include analysis of social network activ-
ity, ecological systems and economic structures [I]. Within such domains, there
is considerable challenge in the identification of communities as collections of
interconnected nodes [34]. Search methodologies can be deployed to address this
problem but they are typically limited in the range of network sizes that can be
analysed. Microenvironments are an appropriate tool that can be applied in this
context and we are currently developing our approach in this direction.

6 Conclusion

The experimental work reported has evaluated the efficiency of a parameterised
3D grid index for generating microenvironment data for use in the classification
of residues in terms of their contribution to protein-protein interface sites. The
index was evaluated with protein atomic coordinates and has been shown to be
most efficient when the cell size matches the granularity of the summary.

The optimised approach to indexing provides a basis for bulk scanning of
protein data to identify sites where protein-protein interactions may occur.
The use of microenvironments rather than underlying point data values pro-
vides a basis for improving the classification performance of both SVMs and
NNs in exploring protein structures. Prediction accuracy increases progressively
up to about 80% at a microenvironment radius of around 40A. The model of
node classification based on microenvironments in protein network structures
has potential for application in other domains where network size makes
conventional analysis infeasible.
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