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Abstract

Comprehensive analysis of parameter and driver sensitivity is key to establishing the credibility of

models representing complex systems. This is especially so for models of natural systems where

experimental manipulation of the real-world to provide controlled validation data is not possible.

End-to-end ecosystem models (nutrients to birds and mammals) of marine ecosystems fall into this

category with applications for evaluating the effects of climate change and fishing on nutrient fluxes

and the abundances of flora and fauna. Here we present results of both ’one-at-a-time’ (OAT) and

variance based global sensitivity analyses (GSA) of the fish and fishery aspects of StrathE2E, an

end-to-end ecosystem model of the North Sea. The sensitivity of the model was examined with re-

spect to internal biological parameters, and external drivers related to climate and human activity.

The OAT Morris method was first used to screen for factors most influential on model outputs. The

Sobol GSA method was then used to calculate quantitative sensitivity indices. The results indi-

cated that the fish and shellfish components of the model (demersal and pelagic fish, filter/deposit

and scavenge/carnivore feeding benthos) were influenced by different sets of factors. Harvesting

rates were directly influential on demersal and pelagic fish biomasses. Suspension/deposit feeding

benthos were directly sensitive to changes in temperature, while the temperature acted indirectly

on pelagic fish through the connectivity between model components of the food web. Biomass

conversion efficiency was the most important factor for scavenge/carnivorous feeding benthos. The

results indicate the primacy of fishing as the most important process affecting total fish biomass,

together with varying responses to environmental factors which may be relevant in the context
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of climate change. The non-linear responses and parameter interactions identified by the analysis

also highlight the necessity to use global rather than local methods for the sensitivity analysis of

ecosystem models.

Keywords: Climate change, Ocean acidification, Global sensitivity analysis, Morris sensitivity

method, Sobol sensitivity method, North Sea

1. Introduction

A variety of marine ecosystem models have been developed that include both bottom-up (fluc-

tuations in nutrient supply) and top down pressures (harvesting of apex predators), with the aim

of elucidating the effects that fishing, environmental change and nutrient inputs have on fish stocks

(reviewed by Plagányi, 2007). These end-to-end models achieve this by combining physicochemical

and oceanographic processes with the trophic interactions between organismal groupings; from pri-

mary producers to top predators (Rose et al., 2010; Travers et al., 2007). Usage of these models has

included the examination of trophic cascade effects within food webs, and explorations of climate

change effects on selected fisheries (Heath et al., in press; Kaplan et al., 2010).

Many end-to-end ecosystem models require hundreds or thousands of parameters, the majority

of which have values that cannot be accurately measured or are totally unknown leading to consid-

erable uncertainty regarding the reliability of predictions (Steele, 2012). This becomes increasingly

relevant in situations where a relatively minor change in a factor’s value results in a major change in

model output (Link et al., 2012). For such complex ecological models it is therefore vitally impor-

tant to focus on accurately representing those factors that are most influential for the model outputs

(Arhonditsis and Brett, 2004). This demands that a comprehensive sensitivity analysis of model

parameters and drivers is conducted. Although the usage of sensitivity analysis has often been

overlooked in marine ecosystem models (Arhonditsis and Brett, 2004), it is an essential procedure

in conventional model development and its importance is stressed in official guidelines regarding

the modelling of environmental systems (European Commission, 2009; Saltelli et al., 2009; U.S.

Environmental Protection Agency, 2009).

Sensitivity analysis examines the uncertainty in the output of a model and how this relates to

the uncertainties in the model input (Saltelli et al., 2008). It is used to identify which factors are

2



influential to the model output and which are not, and therefore can examine whether model infer-

ences are robust regarding parameterisation or dependent on numerous unverifiable assumptions.

By quantifying sensitivity measures to form indices it is also possible to gain insights into model

operation, and for functional models highlight those parameters, or forcing data, that have the

potential to govern a specific ecological system (e.g. Makler-Pick et al., 2011). Use of sensitivity

indices is of particular pertinence in the context of end-to-end ecosystem models, as it may aid in

quantitatively attributing causes to effects, the understanding of which forms a key requirement of

conservation planning under climate change (Parmesan et al., 2013; Zwiers and Hegerl, 2008).

There are two main methods of sensitivity analysis; local and global (Cariboni et al., 2007).

Local sensitivity analysis is usually derivative based and belongs to a class of one-at-a-time (OAT)

methods. For these, single factors are perturbed with all other factors held fixed and variation in

the output is measured. However, local sensitivity methods are unreliable for all but the simplest

of models due to interactions between factors and non-linear relationships between input factor

ranges and the model output (Saltelli and Annoni, 2010; Wang et al., 2013). In global sensitivity

analysis, all factors are changed together across the full multi-dimensional input space. Where the

probability distribution of a factor is unknown a uniform distribution can be used. This approach

is considered model independent, and the interactions between factors may be explored.

Depending on method used, the output of a global sensitivity analysis can either be a qualitative

or quantitative ranking of factors in terms of their effects on model output. The techniques required

for obtaining the latter tend to have a high computational cost and therefore a qualitative screening

step is recommended to rank factors and a subset of the most influential passed for quantitative

analysis (Mokhtari et al., 2006).

A widely used screening tool is the Morris method (Morris, 1991). This variant on an OAT

analysis allows examination at different points of the factor input space, and is therefore considered

a global rather than a local sensitivity technique (Saltelli et al., 2008; Saltelli and Annoni, 2010).

Factors ranked as important using the Morris method can be further analysed using a global sensi-

tivity method such as the one developed by Sobol (1993). The Sobol method is variance based and

quantifies the relative effects of factors on model output, and interactions between factors (Saltelli

et al., 2008). The combination of the Morris method followed by the Sobol method is an established

methodology that has been successfully implemented for sensitivity analyses across a diverse range

of disciplines including environmental and biological sciences (e.g. deJonge et al., 2012; Sumner et
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al. 2012).

The complexity of end-to-end ecosystem models has meant that making detailed sensitivity

analyses is considered difficult and potentially unfeasible (Fulton 2010; Plagányi 2007). While the

importance of global sensitivity analysis is recognised, and despite their known limitations, only

local sensitivity methods have been attempted (e.g. Köhler and Wirtz, 2002; Niiranen et al., 2012).

Where used, these studies have all been constrained in scope, focusing on specific sets or groupings

of factors. As a result, use of this critical methodology has at best been limited, or else omitted for

these types of ecosystem models (Fulton 2010; Plagányi 2007).

The end-to-end ecosystem model examined in this study is referred to as StrathE2E and was

developed by Heath (2012). This model uses functional groups of taxa rather than defined species

in the representation of nutrient dynamics. This allows for a degree of parameter constraint and is

considered more reliable in terms of longer term analysis and prediction when compared to models

based on individual species representations (Steele et al., 2013). Where data were not available,

parameter values were obtained using to a two stage process of hand fitting followed by simulated

annealing using maximum likelihood estimations (Heath, 2012). This calibration procedure results

in optimal parameter value estimates, in contrast to the alternative approach, usually used for end-

to-end ecosystem models, that relies on the manual tuning of parameters to find a best fit between

computed and observed data. In addition to not ensuring optimal calibration the tuning process is

also inferior for the detection of inadequacies in model structure and parameter choice (Arhonditsis

and Brett, 2004; Kawamiya, 2002).

The geographical setting of StrathE2E is the North Sea; a marginal sea of the Atlantic Ocean

that constitutes a significant area of the North Western European continental shelf (Gröger et al.,

2013; Heath, 2012). Due to high biological productivity continental shelves support important

fisheries, providing over 90% of global fisheries catches, with the North Sea representing one of the

worlds most valuable fishing resources for the past several centuries (Pauly et al., 2002; Rijnsdorp et

al., 1996; Worm et al., 2009). Continental shelves may also act as significant sinks for atmospheric

CO2 accounting for up to 50% of the global ocean’s net annual carbon uptake; a process that

leads to ocean acidification (Thomas et al., 2004). Eutrophication is also considered a key problem

affecting areas of the North Sea in addition to some of the highest local rates of climate change

related temperature increases recorded (Heath et al., 2012; McQuatters-Gollop et al., 2009; Raynor

et al., 2003). Understanding the relative contributions that fishing and environmental change have
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on North Sea fish and shellfish stocks is a priority endeavor for the European fisheries science

community (Dulvy et al., 2008).

The objective of this paper is to conduct a global sensitivity analyses on the StrathE2E ecosystem

model. Due to the relatively large number of parameters involved, the Morris method is used to

screen for influential factors that are then examined using the Sobol method. The aim of the

sensitivity analysis is to derive insights into StrathE2E function, identify those factors that are

influential regarding the fishery outputs, and therefore aid toward the ultimate goal of understanding

how North Sea fisheries could be affected by environmental change.

2. Materials and Methods

2.1 Model description

A detailed description, including all features, parameters, driving data and outputs of StrathE2E

is presented in the paper and associated supporting material of Heath (2012).

The spatial domain represented by StrathE2E is the entire North Sea, with boundaries as defined

by the International Hydrographic Organisation (International Hydrographic Organization, 1953).

The model simulates fluxes of a single nutrient (Nitrogen) between mass state variables representing:

detritus, dissolved nutrient, phytoplankton, benthos, zooplankton, fish and top predators. These

state variables are further resolved into two water column depth layers (called deep and surface) and

a sediment layer. Rates of exchange between the compartments are described in a series of 22 linked

ordinary differential equations. StrathE2E is based on the food web presented in the schematic of

Figure 1. The time dependant drivers were resolved to monthly values that were calculated from

available datasets and included irradiance, temperature, vertical exchange rates, horizontal volume

and exchange rates across open ocean boundaries of each layer, and external inputs from rivers

and the atmosphere. Fishing rates were represented by the proportion of biomass of pelagic fish,

demersal fish and benthic invertebrates removed per day from the North Sea also obtained from

existing datasets (Heath, 2012).

StrathE2E has four outputs that relate to fishery stocks, these represent the combined biomass

of all pelagic fish spp. (e.g. herring, sprats, mackerel, Norway pout); all demersal fish spp. (e.g.

cod, haddock, whiting, plaice); all invertebrate benthic filter and deposit feeders (e.g. filter feeding

molluscs, brittlestars, nematodes, polychaetes) and all invertebrate benthic carnivores/ scavengers

(e.g. crabs, lobsters, sea urchins, starfish).
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The factors examined in the sensitivity analysis are presented in tables 1 and 2. Further infor-

mation regarding driving data are given in the supplementary material, with nominal parameter

values given in table 1. There follows a brief overview of the Morris and Sobol methods.

2.2. Morris sensitivity analysis

The Morris method is an OAT design as only one input factor (xi) is altered between successive

runs of the model. The input space of each factor has p levels in a uniform [0,1] probability

distribution function (PDF) that is rescaled for the actual value that is used in the model. The

elementary effect for the ith input factor is calculated from the successive runs using

EEi(X) =
y(x1 . . . xi−1, xi + ∆, . . . , xn)− y(x1 . . . xn)

∆
(1)

where ∆=p/[2(p− 1)] and p is even. Each factor is modified once resulting in n+1 runs of the

model.

The procedure is repeated r times providing r elementary effects for each factor, (r being

referred to as the trajectory of the factor sample space). The sensitivity measures, as suggested

by Morris (1991), are the mean µi and the standard deviation σi of each elementary effect across

all trajectories. The mean captures the impact that uncertainty in the factor input has on the

model output, thus indicating important factors, while the standard deviation indicates nonlinear

responses to factor values and/or interactions with other factors. An alternative to µ is µ? that

represents the mean of the absolute values of the elementary effects (Campanolongo et al., 2007).

µ?
i =

1

r

r∑
j=1

∣∣∣EEj
i

∣∣∣ (2)

This measure is widely used as it reduces type II errors, that can be encountered when using µ

and is the one adopted in this paper.

As the runs of the model represent a trajectory within the factor sample space, it is recommended

to optimise the choice of trajectories to facilitate maximising their spread in the input domain,

prior to conducting the analysis (Campolongo et al., 2007; Saltelli et al., 2008). Therefore 1000

trajectories were created, each with 4 levels, and the 50 with the highest spread d , based on the

6



sum of geometric distances between trajectory pairs m and l were selected using

dml =


n+1∑
i=1

n+1∑
j=1

√√√√ n∑
z=1

[
X

(i)
z (m)−X(j)

z (l)
]2

0

(3)

where n is the number of input factors and X(i)
z (m) represents the z th coordinate of the ith

point of the mth trajectory. The euclidean distances D between all the possible pairs of selected

trajectories were calculated and the 10 that represented the highest value of D were used in the

elementary effects method (i.e. r =10, p = 4).

2.3. Sobol sensitivity analysis

The method used was initially developed by Sobol (1993) with further refinements by Saltelli

(2002) as reviewed by Saltelli et al. (2008), and is based on the decomposition of the output variance

of the model in question, which can be represented by

Y = f(X) = f(X1, . . . , Xn) (4)

where Y is the model output, and X = (X1 . . .Xn) is the set of factors. The variance decom-

position of f being

V (Y ) =

n∑
i=1

Vi +

n∑
i=1

n∑
j=i+1

Vij . . .+ V1...,n (5)

where X has been scaled between 0 and 1, to form a n-dimensional unit hyperspace Ωn; V (Y )is

the total variance; Vi is the partial variance, of Xi on Y and is given by Vi = V [E (Y | Xi)], also

known as ’main effect’, while Vij is the impact of Xi and Xj on the total variance minus their first

order effects. Using this variance decomposition, the first order sensitivity Si , and the total effect

sensitivity index Sti are given by Saltelli et al. (2008) as

Si =
V [E (Y | Xi)]

V (Y )
(6)

Sti = 1− V [E (Y | X∼i)]

V (Y )
(7)

The Monte Carlo based procedure proposed by Saltelli et al. (2008), using quasi-random sam-

pling of model factors, was used to obtain the first order and total effects indices for each factor.
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2.4. Implementation of Sensitivity Analyses

The sensitivity analysis was coded in R 2.15.01 (R core Team, 2012). All computations were

conducted on a desktop PC. The implementation of StrathE2E in the sensitivity analysis, was

identical to the one previously detailed in Heath (2012), representing the same fisheries and spatial

domain, with identical nominal values for parameter data (table 1), driving data and fishing rates

(table 2).

As probability distributions were not known for the parameters (s1-s122), uniform distributions

with bounds varying 10% either side of the nominal values were chosen. For the driving data and

fishing rates (d1,d6-d24), the datasets in the original model description (Heath, 2012) were used (see

supplementary data). For driver d1 (Sea surface irradiance), additional data was obtained from the

Weybourne data archive (Weybourne Atmospheric Observatory, 2006). For the benthic invertebrate

fishing rate drivers (d25 & d26), the original model only used fishing data from a single timepoint.

Therefore the demersal fishing rate distribution was chosen to represent the benthic invertebrate

fishing rates. Inverse cumulative distribution functions were calculated for the monthly data of each

of these drivers. For drivers (d2-d5), originally calculated from simulation and limited sampling,

uniform distributions with bounds varying 10% either side of the nominal values were chosen using

transformations where appropriate. These distributions were used to derive the input values to

both the Morris and Sobol methods for a specified probability. For the Sobol method the entire

range of the distribution was used, while for the Morris method the distribution was split into p+1

(i.e. 5) equal intervals and the values at the center of the bins used (Saltelli et al., 2008).

For all of the analyses, the model was run for 40 years to approximate a stationary annual

cycle, and the final year data used. The model outputs examined were the biomasses of pelagic fish

adults, pelagic fish larvae, demersal fish adults, demersal fish larvae, suspension feeding benthos

and carnivorous/ scavenging benthos.

The StathE2E model produces time-dependant outputs, that can be analysed by calculating the

sensitivity indices at each time point, resulting in a time-varying sensitivity analysis. While this

approach can be useful for identifying which factors are influential at particular times, for this study

a single measure was preferred, so that influential factors could be identified across the whole of the

model output. Two complimentary methods were used independently to reduce the dimensionality

of the model outputs immediately prior to the calculation of the sensitivity indices: integration and

functional principal component analysis (fPCA) (Sumner et al., 2012). While integration allows
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sensitivity indices relating to absolute biomasses to be calculated, the results of the fPCA can

indicate when other features of the model output have been affected by a factor.

The µ? statistic was used to rank the results of the Morris method. The 10 factors with the

highest value of µ? for each of the fisheries outputs, were collated from the analysis, and re-analysed

using the Sobol method. To ensure convergence of the sensitivity indices, a sample size of 15,000

was used, leading to 540,000 model evaluations.

3. Results

3.1 Morris sensitivity analysis

The results of the Morris sensitivity analysis are presented in figures 2-7, as plots of the values

of µ? against the corresponding standard deviation. The collation of the 10 highest ranked factors

based on µ? values from all outputs of interest, resulted in 6 drivers and 28 parameters being

included in the subsequent Sobol analysis (Tables 3-5). The rankings obtained by fPCA and

integration were identical.

3.2 Sobol sensitivity analysis

The resulting indices for the 34 factors are presented in figures 8-13. Comparison of the Sobol

analysis using fPCA and integration indicated no notable differences between the results obtained

by the two techniques, implying that total biomass was the main feature of the output runs altered

during the analyses. For all outputs the sum of the first order sensitivity indices were less than one,

indicating that the model was non-additive.

3.3 Comparison of method outputs

The top ten rankings from each of the six outputs from the Sobol analysis are compared to the

rankings obtained from the results of the Morris method (tables 4-6). The two methods produced

marginally different results. This difference is to be expected as the Morris method has a limited

exploration of the input factor space when compared to the Sobol method and is indicative of

non-linearities in the response of the model to changes in factor values. The rankings however,

concurred regarding those factors that could be regarded as highly influential, with the exception

of demersal fishing in the pelagic fish outputs. This parameter was influential in the Sobol analysis

but was not so highly ranked using the Morris method. The following results consider the Sobol

sensitivity analysis only.
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3.3.1. Suspension/deposit feeding benthos

Three factors (i.e. Deep temperature (d9), Deep nitrate (d14) and Deep layer thickness(s2))

were highly influential with sensitivity indices over two times larger than the other factors (Figure

8). Deep temperature (d9) was the most influential factor regarding the biomass of the suspension/

deposit feeding benthos. The first order sensitivity index was almost identical to the total sensitivity

of this factor indicating that it has a direct effect on the biomass of this benthic guild. The

differences in first order and total sensitivity indices of deep nitrate and the thickness of the deep

layer indicates that these factors interact with additional factor(s) in the model. The other factors

with total sensitivity indices >0.05, had relatively marginal influence and were irradiance (d1), deep

detritus (d18), irradiance of maximum phytoplankton nutrient uptake (s6), nitrate upgtake rate by

phytoplankton (s14), biomass conversion of suspension feeding benthos (s78) and biomass excretion

by suspension feeding benthos (s87).

3.3.2. Carnivorous/ scavenging benthos

Three factors (i.e. Uptake rate of scavenging benthos (s64), uptake converted to biomass of

scavenging benthos (s79) and biomass excreted by scavenging benthos (s88)) were highly influential

regarding the biomass of carnivorous/scavenging benthos (Figure 9). The sensitivity indices of

these factors were over three times larger than other factors regarding this guild. While there

were differences between the first order and total sensitivity indices, indicating factor interactions,

the relative size of the three main factor indices suggest that they are primarily responsible for

determining the biomass of the carnivorous/ scavenging benthos guild.

3.3.3. Pelagic fish

The sensitivity indices for pelagic fish adults and pelagic fish larvae were comparable, demon-

strating similar profiles regarding the influence of factors (Figures 10 & 11). For both, the impact

of pelagic fishing (d24) and demersal fishing (d23) were the two most influential factors on the

resultant biomasses. However, the relative magnitude of the these indices was different for the two

outputs with the fishing factors having less influence on pelagic fish larvae than for the pelagic fish

adults. For the remaining factors, the sensitivity indices were all slightly higher for the pelagic fish

larvae compared to the pelagic fish adults, however the overall profile remained the same.

Excluding demersal fishing, the sensitivity indices for pelagic fishing were over two times larger

than other factors for the pelagic fish larvae and over three times larger for the pelagic fish adults.
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Demersal fishing sensitivity indices were 50% larger than the other non fishing factors for pelagic fish

larvae, and two times larger than the other non-fishing factors for pelagic adult fish. For the pelagic

fish larvae, biomass conversion by pelagic fish larvae (s80), uptake of herbivorous zooplankton by

pelagic larvae (s28) and the half saturation constant of herbivorous zooplankton uptake by pelagic

larvae (s29) were factors of marginal influence (sensitivity indices >0.05). The indices of these

factors had slightly lower indices for pelagic adult fish, but again they were considered to have

an influence (sensitivity indices >0.05). Comparison of the first order sensitivity indices with the

total sensitivity indices suggested that while influential factors were directly affecting the output,

interactions with other factors were also occurring.

3.3.4. Demersal fish

Demersal fishing was the influential factor on demersal fish larvae and demersal fish adult

biomass (Figures 12 & 13). Its influence was greater on the demersal adult fish guild as com-

pared to the demersal larval guild with indices over 5 times and 3 times greater respectively than

the other factors. The total sensitivity indices of most of the other factors had relatively low first

order indices when compared to the total sensitivity index suggesting that while most of the factors

seemed to exert an influence (total sensitivity indices >0.05), this was due to interactions within

the model. An exception to this was biomass conversion by demersal fish larvae (s81) for which the

two indices were comparable, suggesting that this factor had a direct effect on the demersal fish

outputs.

4. Discussion

Ecosystem models that combine environmental, biological and fishing data are recognised as

important in understanding the effects of climate change and ocean acidification on fisheries (Le

Quense and Pinnegar, 2012; Mackinson et al., 2009; Travers et al., 2007). We report on the

results of a global sensitivity analysis conducted on one of these end-to-end ecosystem models that

incorporates the impact of fishing and environmental drivers on a marine food web.

The advantages of global sensitivity analysis over local one-at-a-time methods are well docu-

mented, however, it is the latter that have dominated the modelling literature (Saltelli and Annoni,

2010). An assumption of substantially increased computational cost may in part have contributed

to this. The methodology where the results of the Morris method are used to screen factors for

inclusion into the more computationally intensive Sobol method has been successfully used across
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modelling disciplines to reduce computational times (e.g. Ciric et al., 2012; Salacinska et al., 2010;

Saltelli and Annoni 2010). For StrathE2E, this approach was also considered successful. For other

end-to-end ecosystem models, the model run-times may make the Sobol variance method compu-

tationally expensive, even with a pre-screening step. In these cases the Morris method alone could

be used to identify sets of influential and non-influential factors to comprise a qualitative assess-

ment of factor influence as has already been used for some lower trophic aquatic food web models

(Ciric et al., 2012; Zheng et al., 2012). Continued refinements to the methodology mean that this

is increasingly being used as a stand alone method for the sensitivity analysis of complex models

(Campolongo et al., 2011; Zheng et al., 2012). For those end-to-end models that are computation-

ally very expensive to run, the use of emulators may be appropriate (Saltelli et al., 2008; Saltelli

and Annoni, 2010; Scott et al., 2011).

The results of the Sobol analysis on StrathE2E, suggests that as a functional model, the structure

of which reflects the interactions between main ecosystem components, insights may be obtained

regarding the relative contributions that individual factors have on the fishery guilds. It is notable

that the four fishery guilds represented are sensitive to different groups of factors. As StrathE2E

does not model individual species, changes in influential factor values for example those associated

with environmental change, would be realised in the North Sea ecosystem as alterations in total

guild biomass based on extant species composition.

For the suspension feeding benthos guild, deep temperature (d9) was the most influential factor.

If StrathE2E is accepted as an accurate representation of the North Sea, changes in deep temper-

ature will have a direct impact on the resultant biomass of suspension feeding benthos. This is

obviously of pertinence in the context of climate change, as increases of 0.2 to 0.6oC per decade

have been recorded in the seas around the UK and Ireland (Rayner et al., 2003). The influence of

this factor also concurs with experimental studies that show temperature as a major environmental

factor affecting benthic filter feeders development, distribution and recruitment (reviewed by Byrne,

2011) and other North Sea ecosystem modelling efforts that have also reported temperature related

changes to this guilds biomass (van der Molen et al., 2013). Deep nitrate (d15) and the thickness

of the deep layer (s2) were also identified as influential environmental parameters in StrathE2E,

as were factors associated with primary production. In the model, mechanisms for the transfer of

nitrogen to the benthic filter feeding guild exist through the deep layer detritus, deep phytoplank-

ton, and secondary producers (figure 1). The parameters identified therefore reflect the importance
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of primary production over secondary production for the transfer of biomass to the filter feeding

guild.

The two parameters, proportion of uptake converted to suspension feeder biomass (s78), and the

uptake rate of nitrate by phytoplankton (s14), are of particular interest in relation to modelling the

impacts of environmental change on the filter feeder guild. Two meta-analyses have suggested that

ocean acidification will negatively affect the growth of benthic filter feeding invertebrates and this

will be acerbated by increased temperatures (Harvey et al., 2013; Kroeker et al., 2013). In contrast,

phytoplankton growth will be positively affected by ocean acidification and temperature (Harvey

et al., 2013; Kroeker et al., 2013). Recent experimental and field studies have suggested that for

the suspension feeder Mytilus edulis, increased food availability counteracts the negative effects of

ocean acidification (Thomsen et al., 2013). However, while the amount of North Sea phytoplankton

biomass is increasing there has been a significant regime shift to species of lower nitrogen content

(McQuatters-Gollop et al., 2007). There is therefore obvious potential for the StrathE2E model

to further examine the sensitivity of the filter feeding guild to the complex interplay of these

parameters.

The three parameters that have a dominant influence on the carnivorous/scavenging benthos

guild are related to food acquisition and biomass conversion/excretion rates. This suggests that

members of this guild are not overly affected by the environmental drivers and other external

parameters included in the model, but are largely governed by their ability to obtain food and

metabolise it. This is in contrast with the results of the sensitivity analysis on the suspension

feeding benthic guild, where multiple factors are of influence. Experimental studies have suggested

that these two guilds will be affected differently by CO2 induced environmental changes, (Harvey

et al., 2013; Kroeker et al., 2013) and to an extent this appears to be reflected in the model.

Heath (2012) examined the effect of fishing on the benthic productivity, conducting a preliminary

OAT analysis using StrathE2E. This suggested that demersal fishing rates affected the benthic food

web. Although fishing rates do exert an influence on the benthic guilds, this is insignificant compared

to the factors already identified.

By far the most important factor for both demersal and pelagic fish guilds was their respective

fishing rates. This is unsurprising, as it is well documented that fishing can have a direct effect on

fish numbers. Using StrathE2E, Heath (2012) reported that demersal and pelagic fishing affected

the resultant biomass of both the demersal and pelagic fish guilds, thus highlighting linkages between
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them. The sensitivity analysis concurs with this observation, but further indicated that demersal

fishing is far more influential to pelagic fish biomass than pelagic fishing is to demersal fish biomass.

Previous examination of marine ecosystem models has indicated that while fishing is an important

influence on fish biomass, it is not a deterministic response, as complex food web interactions

between species, and trophic levels make species responses difficult to predict (Mackinson et al.,

2009; Speirs et al., 2010). The differences observed between the total and first order sensitivity

indices of the fishing rates concurred with this, indicating that within the model, fishing was very

influential but interactions with other factors did occur to produce the resultant outputs. Previous

studies have highlighted the difficulties inherent in identifying possible impacts of environmental

change on North Sea fisheries due to the effects that commercial fishing has on demersal and pelagic

fish numbers (Pitois et al., 2012). By fixing fishing rates in the StrathE2E model, the impacts of

factors associated with environmental change could be further explored to identify their relative

importance assessed for the fish stocks.

A notable difference between the pelagic and demersal guilds was that significant interactions

occurred between many of the factors to influence the demersal guild biomass, while the pelagic

guild was influenced by fewer factors, with less interactions between them. This is likely to be a

reflection of the extensive linkages of the demersal species to both the benthic, demersal and pelagic

food webs, while the pelagic fish species were limited to the pelagic web (Heath, 2012). Because of

interactions, multiple factors may therefore need to be varied to cause substantial changes in the

output biomass of the demersal fishery making this guild relatively robust to single factor change,

in comparison to the pelagic guild.

For both fish guilds, changes in parameter value are more influential on larval fish stages than

their adult counterparts. For the larval stages, uptake rates and half saturation constants of her-

bivorous zooplankton uptake by fish larvae (s28, s29, s38, s39), together with the proportion of

this uptake converted to fish biomass (s80, s81) were identified as influential. Although the direct

effects of temperature on fish are well documented, North Sea larval fish populations are proba-

bly influenced by climate indirectly through bottom-up effects impacting on plankton availability

(Alvarez-Fernandez et al., 2012; Pitois et al., 2012). Therefore the model appears to reflect this

distinction through the influence of factors relating to the uptake and conversion of herbivorous

zooplankton rather than temperature. Studies on ocean acidification have indicated that larval

stages will be affected most through changes in their growth and mortality rates (Baumann et al.,
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2012; Frommel et al., 2012). Varying mortality rates of larvae and eggs by ± 8% was not identified

as influential in the Morris method analysis and therefore it would appear that only large scale mor-

talities on this life stage would affect recruitment. In contrast, those parameters associated with

growth (s80, s81) were identified as influential. The similarity between the first order sensitivity

indices and their respective total sensitivity indices suggests that any changes in these parameters

will be directly reflected in the biomass of the demersal and pelagic fish guilds.

In conclusion, a global sensitivity analysis was conducted on StrathE2E, an end-to-end marine

ecosystem model that was parameterised using fisheries and environmental data of the North Sea.

The analysis identified that each of the fishery guilds of the model were influenced by different

drivers and parameters. Carnivorous/ scavenging invertebrate benthos appeared to be the most re-

silient guild to potential environmental influence, provided their rate of biomass conversion was not

affected. This parameter was found to be influential for all of the other guilds examined and sug-

gests that representing environmental stressors such as ocean acidification in the model as changes

to metabolic parameters, could lead to wide ranging impacts on fisheries productivity. Future work

should aim to extend the sensitivity analysis to specifically explore the response of the guilds to

predicted future temperature profiles and changes of factors in response to the environmental pres-

sures highlighted. For filter feeding benthic invertebrates, examination of second order interactions

should also be conducted to try an elucidate the relationships between temperature and uptake

rates.
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Table 1: Static parameters of StrathE2E model

Reference Parameter Value Unit Definition

s1 thik s 28 m Thickness of surface layer bounded by sea surface and 30m
s2 thik d 42 m Thickness of deep layer bounded by 30m and seabed
s3 thik x 0.1 m Thickness of sediment layer

s4 porosity 0.45 m3m−3 Proportion of water in seabed sediment
s5 thik r 10 m Thickness of bottom boundary layer (for benthos feeding)

s6 Lmaxup 5 E.m2.d−1 Irradiance at maximum nutrient uptake by phytoplankton

s7 sed wat dif 1x10−6 m2d−1 Coefficient of vertical flux between sediment pore water and deep layer
s8 qtena 2 Q10 uptake value for autotrophs
s9 qtenh 2.2 Q10 uptake value for heterotrophs
s10 qtenm 2.4 Q10 uptake and metabolic value for bacteria
s11 qtenr 10 Q10 reference value
s12 p pref 0.95748 Preference of zooplankton for plankton
s13 d pref 0.04251 Preference of zooplankton for detritus

s14 uNIT phytt 1.03476 mMN.m−2.d−1 Uptake rate of nitrate by phytoplankton

s15 hsNIT phytt 16.57074 mMN.m−3 Half saturation constant of nitrate uptake by phytoplankton

s16 uAMM phytt 2.15309 mMN.m−2.d−1 Maximum uptake rate of ammonia by phytoplankton

s17 hsAMM phytt 16.57074 mMN.m−3 Half saturation constant of ammonia uptake by phytoplankton

s18 uphyt herbt 1.14055 mMN.m−2.d−1 Maximum uptake rate of phytoplankton by herbivorous zooplankton

s19 hsphyt herb 4.84752 mMN.m−3 Half saturation constant of phytoplankton uptake by herbivorous zooplankton

s20 udet herbt 0.050643 mMN.m−2.d−1 Maximum uptake rate of detritus by herbivorous zooplankton

s21 hsdet herb 4.84752 mMN.m−3 Half saturation constant of detritus uptake by herbivorous zooplankton

s22 uherb carnt 0.27134 mMN.m−2.d−1 Maximum uptake of herbivorous zooplankton by carnivorous zooplankton

s23 hsherb carn 1.82208 mMN.m−3 Half saturation constant of herbivorous zooplankton uptake by carnivorous
zooplankton

s24 ufishplar carn 0.030827 mMN.m−2.d−1 Maximum uptake of pelagic fish larvae by carnivorous zooplankton

s25 hsfishplar carn 1.82208 mMN.m−3 Half saturation constant of pelagic fish larvae uptake by carnivorous zoo-
plankton

s26 ufishdlar carn 0.0118 mMN.m−2.d−1 Maximum uptake of demersal fish larvae by carnivorous zooplankton

s27 hsfishdlar carn 1.82208 mMN.m−3 Half saturation constant of demersal fish larvae uptake by carnivorous zoo-
plankton

s28 uherb fishplart 0.51189 mMN.m−2.d−1 Maximum uptake rate of herbivorous zooplankton by pelagic fish larvae

s29 hsherb fishplar 6.43283 mMN.m−3 Half saturation constant of herbivorous zooplankton by pelagic fish larvae

s30 uherb fishpt 0.04884 mMN.m−2.d−1 Maximum uptake rate of herbivorous zooplankton by pelagic fish

s31 hsherb fishp 1.29974 mMN.m−3 Half saturation constant of herbivorous zooplankton by pelagic fish

s32 ucarn fishpt 0.01272 mMN.m−2.d−1 Maximum uptake rate of carnivorous zooplankton by pelagic fish

s33 hscarn fishpt 1.29974 mMN.m−3 Half saturation constant of carnivorous zooplankton by pelagic fish

s34 ufishdlar fishpt 0.00093 mMN.m−2.d−1 Maximum uptake rate of demersal fish larvae by pelagic fish

s35 hsfishdlar fishpt 1.29974 mMN.m−3 Half saturation constant of demersal fish uptake by pelagic fish

s36 ufishplar fishpt 0.00307 mMN.m−2.d−1 Maximum uptake rate of pelagic fish larvae by pelagic fish

s37 hsfishplar fishp 1.29974 mMN.m−3 Half saturation constant of pelagic fish larvae uptake by pelagic fish

s38 uherb fishdlart 0.22005 mMN.m−2.d−1 Maximum uptake rate of herbivorous zooplankton by demersal fish larvae

s39 hsherb fishdlar 2.49093 mMN.m−3 Half saturation constant of herbivorous zooplankton by demersal fish larvae

s40 ucarn fishdt 0.0003 mMN.m−2.d−1 Maximum uptake rate of carnivorous zooplankton by demersal fish

s41 hscarn fishd 0.34059 mMN.m−3 Half saturation constant of carnivorous zooplankton by demersal fish

s42 ubenths fishdt 0.00524 mMN.m−2.d−1 Maximum uptake rate of benthic suspension feeders by demersal fish

s43 hsbenths fishd 0.34059 mMN.m−3 Half saturation constant of benthic suspension feeders rate by demersal fish

s44 ubenthc fishdt 0.00045 mMN.m−2.d−1 Maximum uptake rate of benthic carnivores by demersal fish

s45 hsbenthc fishd 0.34059 mMN.m−3 Half saturation constant of benthic carnivore uptake by demersal fish

s46 ufishplar fishdt 0.00182 mMN.m−2.d−1 Maximum uptake rate of pelagic fish larvae by demersal fish

s47 hsfishplar fishd 0.34059 mMN.m−3 Half saturation constant of pelagic fish larvae uptake by demersal fish

s48 ufishdlar fishdt 0.00092 mMN.m−2.d−1 Maximum uptake rate of demersal fish larvae by demersal fish
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Table 1: Static parameters of StrathE2E model

Reference Parameter Value Unit Definition

s49 hsfishdlar fishd 0.34059 mMN.m−3 Half saturation constant of demersal fish larvae uptake by demersal fish

s50 ufishp fishdt 0.00204 mMN.m−2.d−1 Maximum uptake rate of pelagic fish by demersal fish

s51 hsfishp fishd 0.34059 mMN.m−3 Half saturation constant of pelagic fish uptake by demersal fish

s52 ufishd fishdt 0.0018 mMN.m−2.d−1 Maximum uptake rate of demersal fish larvae by demersal fish

s53 hsfishd fishd 0.34059 mMN.m−3 Half saturation constant of demersal fish larvae uptake by demersal fish

s54 udisc fishdt 0.00141 mMN.m−2.d−1 Maximum uptake rate of discards by demersal fish

s55 hsdisc fishd 0.34059 mMN.m−3 Half saturation constant of discards uptake rate by demersal fish

s56 ucorp fishdt 0.00034 mMN.m−2.d−1 Maximum uptake rate of corpses by demersal fish

s57 hscorp fishd 0.34059 mMN.m−3 Half saturation constant of corpses uptake by demersal fish

s58 uphyt benthst 1.12143 mMN.m−2 Maximum uptake rate of phytoplankton by benthic suspension feeders

s59 hsphyt benths 145.6142 mMN.m−2 Half saturation constant of phytoplankton uptake by benthic suspension feed-
ers

s60 udet benthst 2.23109 mMN.m−2.d−1 Maximum uptake rate of suspended detritus by benthic suspension feeders

s61 hsdet benths 145.6142 mMN.m−2 Half saturation constant of suspended detritus uptake by benthic suspension
feeders

s62 used benths 0.05326 mMN.m−2.d−1 Maximum uptake rate of sediment detritus by suspension feeding benthos

s63 hssed benths 145.6142 mMN.m−2 Half saturation constant of sediment detritus uptake by suspension feeding
benthos

s64 ubenths benthct 0.02817 mMN.m−2.d−1 Maximum uptake rate of suspension feeding benthos by scavenging benthos

s65 hsbenths benthc 6.64709 mMN.m−2 Half saturation constant of suspension feeding benthos uptake by scavenging
benthos

s66 ucorp benthct 0.03088 mMN.m−2.d−1 Maximum uptake rate of corpses by scavenging benthos

s67 hscorp benthc 6.64709 mMN.m−2 Half saturation constant of corpse uptake by scavenging benthos

s68 ufishp bird 0.00881 mMN.m−2.d−1 Maximum uptake rate of pelagic fish by birds and mammals

s69 hsfishp bird 1.57222 mMN.m−3 Half saturation constant of pelagic fish uptake by birds and mammals

s70 ufishd bird 0.03239 mMN.m−2.d−1 Maximum uptake rate of demersal fish by birds and mammals

s71 hsfishd bird 1.57222 mMN.m−3 Half saturation constant of demersal fish uptake by birds and mammals

s72 udisc bird 0.07565 mMN.m−2.d−1 Maximum uptake of discards by birds and mammals

s73 hsdisc bird 1.57222 mMN.m−3 Half saturation constant of discard rate of birds and mammals

s74 ucorp bird 0.02003 mMN.m−2.d−1 Maximum uptake rate of corpses by birds and mammals

s75 hscorp bird 1.57222 mMN.m−3 Half saturation constant of corpse uptake by birds and mammals
s76 aH 0.34 Proportion of uptake converted to biomass by herbivorous zooplankton
s77 aC 0.34 Proportion of uptake converted to biomass by carnivorous zooplankton
s78 aBs 0.34 Proportion of uptake converted to biomass by suspension feeding benthos
s79 aBc 0.34 Proportion of uptake converted to biomass by scavenging benthos
s80 aFplar 0.34 Proportion of uptake converted to biomass by pelagic fish larvae
s81 aFdlar 0.34 Proportion of uptake converted to biomass by demersal fish larvae
s82 aFp 0.275 Proportion of uptake converted to biomass by pelagic fish adults
s83 aFd 0.25 Proportion of uptake converted to biomass by demersal fish adults
s84 abird 0.15 Proportion of uptake converted to biomass by birds and mammals

s85 eHt 0.01 d−1 Rate of biomass excreted by herbivorous zooplankton

s86 eCt 0.005 d−1 Rate of biomass excreted by carnivorous zooplankton

s87 eBst 0.01 d−1 Rate of biomass excreted by suspension feeding benthos

s88 eBct 0.0075 d−1 Rate of biomass excreted by scavenging benthos

s89 eFplart 0.00005 d−1 Rate of biomass excreted by pelagic fish larvae

s90 eFdlart 0.00005 d−1 Rate of biomass excreted by demersal fish larvae

s91 eFpt 0.001 d−1 Rate of biomass excreted by pelagic fish adults

s92 eFdt 0.001 d−1 Rate of biomass excreted by demersal fish adults

s93 ebird 0.00014 d−1 Rate of biomass excreted by birds and mammals

s94 mt 0.00831 d−1 Rate of mineralisation at reference temperature

s95 nst 0.00391 d−1 Rate of nitrification in surface layer at reference temperature
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Table 1: Static parameters of StrathE2E model

Reference Parameter Value Unit Definition

s96 dst 0.00004 d−1 Rate of denitrification in deep layer at reference temperature

s97 ndt 0.04577 d−1 Rate of nitrification in deep layer at reference temperature

s98 ddt 0.00006 d−1 Rate of denitrification in deep layer at reference temperature

s99 msedt 0.00799 d−1 Rate of mineralisation in sediment at reference temperature

s100 nsedt 0.03203 d−1 Rate of nitrification in sediment at reference temperature

s101 dsedt 0.32545 d−1 Rate of denitrification in sediment at reference temperature

s102 xst 0.0308 d−1 Death rate of surface phytoplankton

s103 xdt 0.05362 d−1 Death rate of deep phytoplankton
s104 xcarn 0.00058 Coefficient of density dependant mortality for carnivorous zooplankton
s105 xbenthc 0.00047 Coefficient of density dependant mortality for benthic carnivores

s106 xpfishlar 1.9x10−6 Coefficient of density dependant mortality for pelagic fish larvae

s107 xdfishlar 1.2x10−6 Coefficient of density dependant mortality for demersal fish larvae
s108 xpfish 0.00004 Coefficient of density dependant mortality for pelagic fish
s109 xdfish 0.00005 Coefficient of density dependant mortality for demersal fish
s110 xbird 0.055 Coefficient of density dependant mortality for birds/mammals

s111 dsink s 0.14588 d−1 Sinking rate of detritus in surface layer

s112 dsinkd klow 0.22159 d−1 Sinking rate of detritus in deep layer

s113 dsink dkhi 0.0463 d−1 Mixing rate of detritus between layers
s114 Pdiscard 0.1 Fraction of pelagic fish catch discarded
s115 Sdiscard 0.12 Fraction of shellfish catch discarded
s116 dfdp 0.09041 Coefficient for biomass dependency for demersal catch discards
s117 bendamage 0.001 Proportion of demersal fishing as mortality on suspension feeding benthos
s118 demdamage 0 Proportion of demersal fishing as mortality on carnivorous benthos

s119 disc corp 0.42938 d−1 Rate of discards sinking to become seabed corpses

s120 xcorp det 0.09064 d−1 Conversion rate of corpse mass to detritus at reference temperature

s121 DF fecundity 0.4 g.g−1 Demersal fish fecundity

s122 PF fecundity 0.25 g.g−1 Pelagic fish fecundity
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Table 2: Time dependant drivers and fishing rates
Reference Parameter Unit Description

d1 slight Em−2d−1 Sea surface irradiance

d2 logespm mg m−3 Suspended particulate matter

d3 logkvert m−1 Vertical attenuation coefficient of irradiance

d4 mixlscale m2s−1 Vertical diffusion coefficient

d5 sinflow d−1 Flushing rate of surface layer by open ocean boundaries

d6 dinflow d−1 Flushing rate of deep layer by open ocean boundaries

d7 rivervol d−1 Flushing rate of surface layer by river inputs
d8 stemp oC Temperature of surface layer
d9 dtemp oC Temperature of deep layer

d10 s nitrate mMNm−3 Boundary concentration of surface layer nitrate

d11 s ammonia mMNm−3 Boundary concentration of surface layer ammonia

d12 s phyt mMNm−3 Boundary concentration of surface layer phytoplankton

d13 s uzoo mMNm−3 Boundary concentration of surface layer zooplankton

d14 d nitrate mMNm−3 Boundary concentration of deep layer nitrate

d15 d ammonia mMNm−3 Boundary concentration of deep layer ammonia

d16 d phyt mMNm−3 Boundary concentration of deep layer phytoplankton

d17 d uzoo mMNm−3 Boundary concentration of deep layer zooplankton

d18 d detritus mMNm−3 Boundary concentration of deep layer detritus

d19 riv nitrate mMNm−3 Volume weighted river nitrate concentrations

d20 riv ammonia mMNm−3 Volume weighted river ammonia concentrations

d21 atmnitrate mMNm−2d−1 Deposition rate of nitrate from atmosphere into surface layer

d22 atmammonia mMNm−2d−1 Deposition rate of ammonia from atmosphere into surface
layer

d23 DF d−1 Demersal fishery harvest rate

d24 PF d−1 Pelagic fishery harvest rate

d25 BC d−1 Benthic carnivore harvest rate

d26 BS d−1 Benthic suspension feeders harvest rate

Table 3: Factor rankings for pelagic fish
Pelagic fish larvae Pelagic fish adults

Rank Morris Sobol Morris Sobol
1 Pelagic fishing (d26) Pelagic fishing(d26) Pelagic fishing (d26) Pelagic fishing (d26)
2 aFplar (s80) Demersal fishing (d25) aFplar (s80) Demersal fishing (d25)
3 hsherb fishplar (s29) aFplar (s80) uherb carnt (s22) aFp (s82)
4 uherb carnt (s22) uherb fishplart (s28) Demersal fishing (d25) aFplar (s80)
5 uherb fishplart (s28) hsherb fishplar (s29) hsherb fishplar (s29) uherb fishplart (s28)
6 thik d (s2) uherb carnt (s22) aFp (s82) uherb fishpt (s30)
7 aC (s77) aC (s77) uherb fishplart (s28) Deep temperature (d9)
8 Demersal fishing (d25) aFp (s82) aC (s77) hsherb fishplar (s29)
9 hsherb carn (s23) Deep temperature (d9) hsherb fishp (s31) aFdlar (s81)
10 aFp (s82) aFdlar (s81) uherb fishpt (s30) uherb carnt (s22)
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Table 4: Factor rankings for demersal fish
Demersal fish larvae Demersal fish adults

Rank Morris Sobol Morris Sobol
1 Demersal fishing (d25) Demersal fishing (d25) Demersal fishing (d25) Demersal fishing (d25)
2 aH (s76) uherb fishdlart (s38) aH (s76) uherb fishdlart (s38)
3 aFdlar (s81) aH (s76) aFdlar (s81) aH (s76)
4 DF fecundity (s121) Deep nitrate (d15) uherb fishdlart (s38) Deep nitrate (d15)
5 hsherb fishdlar (s39) uphyt herbt (s18) aFd (s83) aFd (s83)
6 uphyt herbt (s18) hsherb fishdlar (s39) hsherb fishdlar (s39) uphyt herbt (s18)
7 uherb fishdlart (s38) DF fecundity (s121) Deep nitrate (d15) hsherb fishdlar (s39)
8 aFd (s83) Pelagic fishing (d26) uphyt herbt (s18) thik d (s2)
9 Pelagic fishing (d26) aFd (s83) eFdt (s92) aFdlar (s81)
10 Deep nitrate (d15) thik d (s2) DF fecundity Pelagic fishing (d26)

Table 5: Factor rankings for benthic invertebrates
Suspension feeding benthos Carnivorous/ scavenging benthos

Rank Morris Sobol Morris Sobol
1 thik d (s2) Deep temperature (d9) aBc (s79) aBc (s79)
2 Deep temperature (d9) Deep nitrate (d15) ubenths benthct (s64) ubenths benthct (s64)
3 Deep nitrate (d15) thik d eBct (s88) eBct (s88)
4 eBst (s87) Irradiance (d1) Pelagic fishing (d26) xbenthc (s105)
5 Lmaxup (s6) eBst (s87) xbenthc (s105) Pelagic fishing (d26)
6 uNIT phytt (s14) Lmaxup (s6) aC (s77) Deep nitrate (d15)
7 aBs (s78) Deep detritus (d20) Deep temperature (d9) thik d (s2)
8 Deep detritus (d20) uNIT phytt (s14) uherb carnt (s22) Demersal fishing (d25)
9 Irradiance (d1) aBs (s78) qtenh (s9) aC (s77)
10 hsNIT phytt (s15) uphyt herbt (s18) thik d (s2) uherb carnt (s22)
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Figure 1: Schematic showing the StrathE2E North Sea food web model components and fluxes. Grey boxes represent
exports from the food web due to biochemistry and fishing; white boxes represent state variables and arrows show
biogeochemical and feeding fluxes. Not shown are the subdivisions by depth layer or sediment; transport and mixing
fluxes; excretion fluxes to ammonia or the density dependant mortality fluxes to corpses (after Heath 2012)
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Figure 2: Results of Morris sensitivity analysis for suspension feeding benthos. Labels for the ten most influential
factors are shown.
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Figure 3: Results of Morris sensitivity analysis for carnivorous/scavenging benthos. Labels for the ten most influential
factors are shown.
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Figure 4: Results of Morris sensitivity analysis for pelagic fish larvae. Labels for the ten most influential factors are
shown.
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Figure 5: Results of Morris sensitivity analysis for adult pelagic fish. Labels for the ten most influential factors are
shown.
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Figure 6: Results of Morris sensitivity analysis for demersal fish larvae. Labels for the ten most influential factors
are shown.
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Figure 7: Results of Morris sensitivity analysis for adult demersal fish. Labels for the ten most influential factors are
shown.
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Figure 8: Results of Sobol sensitivity analysis for suspension feeding benthos. Filled columns represent total effects,
open columns represent first order effects.
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Figure 9: Results of Sobol sensitivity analysis for carnivorous/scavenging benthos. Filled columns represent total
effects, open columns represent first order effects.
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Figure 10: Results of Sobol sensitivity analysis for pelagic fish larvae. Filled columns represent total effects, open
columns represent first order effects.
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Figure 11: Results of Sobol sensitivity analysis for adult pelagic fish. Filled columns represent total effects, open
columns represent first order effects.
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Figure 12: Results of Sobol sensitivity analysis for demersal fish larvae. Filled columns represent total effects, open
columns represent first order effects.
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Figure 13: Results of Sobol sensitivity analysis for adult demersal fish. Filled columns represent total effects, open
columns represent first order effects.
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