Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Frequency dependence of the dielectric and electro-optic response in suspensions of charged rod-like colloidal particles

Delgado, A. V. and Carrique, F. and Arrojo, F. J. and Bellini, Tommaso and Mantegazza, Francesco and Giardini, Mario Ettore and Degiorgio, Vittorio (1998) Frequency dependence of the dielectric and electro-optic response in suspensions of charged rod-like colloidal particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 140. pp. 157-167. ISSN 0927-7757

Text (Delgado-etal-CSA-1998-Frequency-dependence-of-the-dielectric-and-electro-optic-response-in-suspensions)
Delgado_etal_CSA_1998_Frequency_dependence_of_the_dielectric_and_electro_optic_response_in_suspensions.pdf - Accepted Author Manuscript
License: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 logo

Download (660kB) | Preview


We have performed an experimental investigation on the electrokinetic properties of charged rod-like fluorinated latex colloids. Systematic measurements of electrophoretic mobility, dielectric constant and electric birefringence have been performed as a function of the concentration of added nonionic surfactant and salt. In the investigated range of parameters, the zeta potential is a strongly decreasing function of the concentration of nonionic surfactant, while it is basically independent from ionic strength. We have obtained the frequency dependence of dielectric constant and Kerr constant as a function of zeta-potential and ionic strength. We observe the transition from a low frequency behavior, where both the dielectric constant and the Kerr constant are enhanced by the presence of the double layer, to a high frequency behavior, where both quantities take the value expected for unchanged particles in an insulating medium. The shape of the frequency dispersion of the Kerr constant coincides with that of the dielectric constant, but the cut-off frequencies are the same only when the zeta-potential of the particles is low.