Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Tunable diode laser based concentration measurements of water vapour and methane on a solid oxide fuel cell

Lengden, Michael and Cunningham, Robert and Johnstone, Walter (2013) Tunable diode laser based concentration measurements of water vapour and methane on a solid oxide fuel cell. Journal of Lightwave Technology, 31 (9). 1354 - 1359. ISSN 0733-8724

Full text not available in this repository. (Request a copy from the Strathclyde author)


This paper presents concentration measurements of water vapour and methane, taken in-situ on an operational solid oxide fuel cell (SOFC) test rig using tunable diode laser spectroscopy (TDLS). Methane concentration measurements are presented for the TDLS system and are compared with concentration measurements taken using gas chromatography (GC). Furthermore, purge times for the SOFC gas-analysis system have been calculated using TDLS, which are measurements that cannot be obtained directly using GC. Finally, water vapour concentration measurements in the SOFC cathode are shown for different system operating conditions: a dry cathode cycle and during the introduction of water vapour. As GC cannot be used to measure water vapour in the SOFC cathode stream, a direct comparison cannot be made with the TDLS measurements.