Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.


Prospects for the decentralised control of small-scale power networks with embedded generation

Dudgeon, Graham and Leithead, William and O'Reilly, John and Mcdonald, James (2000) Prospects for the decentralised control of small-scale power networks with embedded generation. In: 2000 IEEE power engineering society winter meeting, conference proceedings, volumes 1-4. IEEE, Piscataway, NJ, pp. 1399-1404. ISBN 0780359364

Full text not available in this repository. Request a copy from the Strathclyde author


The control of a small-scale power network incorporating four generators is investigated in this paper. The small-signal dynamic characteristics and control system performance are assessed using individual channel analysis and design (ICAD). ICAD is motivated through the need to understand the effect of system interaction on both the control design task and robustness. System interaction on individual transmissions is explicitly considered through the use of multivariable structure functions which, although scalar, encapsulate the multivariable nature of the system. The strength of such an approach is that highly successful single-input single-output classical control techniques such as Nyquist/Bode can be used without loss of multivariable information. For the example network, ICAD enables the design of the individual controllers to be performed independently of one another and determines that the effect of system interaction is not detrimental to network stability. It therefore potentially provides a strong platform for consideration of large-scale networks with embedded generation. Finally, the ICAD network control analysis and