Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

The micropolar behaviour of cortical bone : size and surface effects in 3 point bending

Frame, Jamie Campbell and Wheel, Marcus and Riches, Philip (2013) The micropolar behaviour of cortical bone : size and surface effects in 3 point bending. In: XXIV Congress of the International Society of Biomechanics, 2013-08-04 - 2013-08-09.

Full text not available in this repository. Request a copy from the Strathclyde author


The heterogeneous microstructure of cortical bone may be important in the determination of stress concentrations and shielding in the vicinity of orthopaedic implants. We hypothesise that micropolar elasticity can parameterise the microstructure of cortical bone to better predict local stresses. Threepoint bending tests on bovine mid-diaphyseal bone demonstrated a size effect in which sample stiffness decreased as size reduced. However, computational predictions indicate that the size effect depends entirely on the surface condition: smooth surfaces result in increased stiffness as size decreases, whilst surfaces corrugated by the microstructure demonstrated an identically strong, yet opposite, effect. We have thus established the connection between anti-micropolar behaviour and surface heterogeneity, of significant relevance to all heterogeneous solids. For bone in particular, we have shown that the micropolar characteristic length is consistent with the Haversian canal diameter. Haversian canals are therefore of fundamental importance in understanding local stress and strain fields in cortical bone.