
MODELING ARTERIAL WALL DRUG CONCENTRATIONS

FOLLOWING THE INSERTION OF A DRUG-ELUTING STENT

SEAN MCGINTY† , SEAN MCKEE† , ROGER M WADSWORTH‡ , AND CHRISTOPHER

MCCORMICK§¶

Abstract. A mathematical model of a drug-eluting stent is proposed. The model considers a
polymer region, containing the drug initially, and a porous region consisting of smooth muscle cells
embedded in an extracellular matrix. An analytical solution is obtained for the drug concentration
both in the target cells and the interstitial region of the tissue in terms of the drug release con-
centration at the interface between the polymer and the tissue. When the polymer region and the
tissue region are considered as a coupled system it can be shown, under certain assumptions, that the
drug release concentration satisfies a Volterra integral equation which must be solved numerically in
general. The drug concentrations, both in the cellular and extracellular regions, are then determined
from the solution of this integral equation and used in deriving the mass of drug in the cells and
extracellular space.
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1. Introduction. Coronary heart disease (CHD) is the main cause of death in
developed countries [32] and accounts for 18% of all deaths in the United States an-
nually [26]. CHD is characterized by a blockage or occlusion of one or more of the
arteries which supply blood to the heart muscle. This is due to atherosclerosis, a com-
plex progressive inflammatory disease [25], which leads to the build up of fatty plaque
material near the inner surface of the arterial wall [29]. If left untreated, this leads to
episodes of chest pain (angina). Ultimately, the atherosclerotic plaque is vulnerable
to rupture, leading to the formation of a blood clot which blocks the artery, causing a
heart attack. Until relatively recently, by-pass surgery was required. However, in the
majority of cases this has now been replaced by inserting a small metallic cage called
a stent into the occluded artery to maintain blood flow. When a stent is implanted
into an artery, the endothelium is severely damaged. The consequent inflammatory
response and excessive proliferation and migration of smooth muscle cells leads to the
development of in-stent restenosis (ISR), a re-occlusion of the artery which is a signif-
icant limitation of bare metal stents. The introduction of drug-eluting stents (DES)
significantly reduced the occurrence of ISR, by releasing a drug to inhibit smooth mus-
cle cell proliferation. However, their use has been associated with incomplete healing
of the artery and substantial efforts are now dedicated towards the development of
enhanced DESs. Photographs of typical stent designs are provided below (see Figure
1.1) while Figure 1.2 displays the stent, in situ in the coronary artery.

An important aspect in the performance of any DES is the drug release pro-
file. Although a number of animal models are recommended for preclinical safety
and efficacy evaluation of these devices [38], incomplete understanding of the factors
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Fig. 1.1. A selection of stent designs.

governing drug release and distribution following stenting currently limits the opti-
misation of such drug release profiles. Several authors have focussed specifically on
the drug release problem. Zhao et al. [45] presented an analytical solution of a cylin-
drical diffusion model to describe the experimental drug release of everolimus from a
Dynalink-E polymer coated stent. They demonstrated that the release could be con-
trolled by varying the coating thickness and diffusion coefficient and found that their
model solution could be fitted to both in vitro and in vivo data simply by varying the
diffusion coefficient. Formaggia et al. [15] considered a dissolution-diffusion model
which also incorporated polymer degradation while Prabhu et al. [36] focused specifi-
cally on the degradation and release of everolimus from a polylactic stent coating and
validated their compartmentalized model using in vitro data. A number of other con-
tributions in the literature have attempted to combine mathematical modeling with
experimental validation. Balakrishnan et al. [2] utilised computational fluid dynam-
ics and two dimensional transient convection-diffusion to make predictions of drug
elution which were then verified using empirical data from stented porcine arteries.
They found that arterial uptake was only maximized when the rates of drug release
and absorptions matched. Rossi et al. [37] modeled a bioresorbable DES based on de-
tailed constitutive equations and taking into account the main physical and chemical
mechanisms involved in coating degradation, drug release and restenosis inhibition.
Their results were verified against selected in vitro and in vivo data available in the
literature. Most recently, Tzafriri et al. [42] developed a mathematical framework of
arterial drug distribution and receptor binding following stent elution. Their model
predicted that tissue content linearly tracked stent elution rate; this prediction was
validated in porcine coronary artery sirolimus-eluting polymer coated stent implants.
In an attempt to make some gains in modeling this complex problem, Seidlitz et al.

[39] utilised a vessel-simulating flow through cell to examine release from DES in vitro.
This tool allowed for the examination of diffusion depth and the distribution in the
arterial wall.

Several computational approaches to drug release from stents have been employed.
Lovich and Edelman [28], Constantini et al. [10], and McGinty et al. [30] numerically
studied a one-dimensional model. Two-dimensional models were computed by Hwang
et al. [20], Zunino [47] and Grassi et al. [16]. A three-dimensional model in a sim-
plified geometry was studied by Hose et al. [19] while, Vairo et al. [43] considered
a multidomain approach. Zunino et al. [48] presented three-dimensional numerical
models of stent expansion and release into the blood flow and tissue while the effect
of luminal flow on arterial deposition is considered in [23] and [24]. Karner and Perk-
told [21] used the finite element method to calculate the transport processes across
the lumen, the intima and the media, coupled with the flux across the endothelium
and the internal elastic lamina which they modeled mathematically using the Kedem-
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Katchalsky equations. Delfour et al. [14], on the other hand, focused on the effect of
the number of struts and the ratio between the coated area, and attempted to opti-
mize the effect of the dose. Mongrain et al. [31] numerically investigated the effect of
diffusion coefficient and struts apposition on drug accumulation in the arterial wall.
More recently, Tambaca et al. [41] presented a mathematical model for the study of
the mechanical properties of endovascular stents in their expanded state. Realising
the sheer complexity of modeling the whole stent-tissue system, D’Angelo et al. [13]
employed model reduction strategies to simplify the computations. This involved a
combination of lumped parameter models to account for drug release, a one dimen-
sional model to handle the complex stent pattern and a three dimensional model for
drug transfer in the artery.

Despite the aforementioned numerical advances, there is still a lack of analyti-
cal solutions in the literature, especially for the coupled stent tissue system. Two
interesting papers by Pontrelli and de Monte ([33], [34]) considered a similar model
to the more general (but still one-dimensional) models of McGinty et al. [30]. Their
model is a two layer model (drug concentration in both the polymer and the tissue
regions) and, through the Kedem-Katchalsky equations, allows for a topcoat. They
obtained an elegant analytical solution through separation of variables and used this
solution to show the effect of filtration velocity, drug metabolism and the amount (i.e.
the mass) of drug in the tissue. Pontrelli and de Monte have subsequently extended
their work to consider a multi-layer model [35]. Mathematical models which admit
analytical solutions, such as the one considered in this paper, have a real part to play
in addressing this complex problem.

This paper develops a mathematical model for drug release from polymer coated
DES and the subsequent uptake into the arterial wall. Having written down a model
which makes certain simplifying assumptions, the strategy is the following. First
we assume that we know the drug release concentration at the interface between
the polymer and the tissue, say g(t). This allows us to obtain a general analytical
solution for any g(t) both for the drug concentration in the extracellular matrix and
the smooth muscle cells themselves. This analytical solution involves the inversion of
a Laplace transform with three branch points. We then examine the concentration
in the polymer and observe that, if g(t) were known, the problem would be over-
determined. Indeed we can write down two independent well-posed problems, both of
which admit analytical solutions. However, the arbitrary function g(t), representing
drug release, must be such that the two solutions are identical. Hence, by equating
these two solutions, it is possible to derive a Volterra integral equation for g(t). We
then proceed to solve this integral equation for g(t) and utilise this in computing the
mass of drug in the cells and extracellular space. Thus we have an alternative approach
to the two-layered model of Pontrelli and de Monte, that is capable of modeling the
drug concentration within the target smooth muscle cells, which is what the clinicians
are principally interested in. This is a novel approach to solving this problem and,
moreover, can be regarded as a generic mathematical tool for solving these types of
diffusion systems.

2. The structure of the arterial wall. The arterial wall is a heterogeneous
structure, consisting of three distinct layers: the intima, the media and the adventitia
[44] - see Figure 2.1. The intima is the innermost region closest to the lumen. The
main constituent of the intima is the endothelial layer of cells, known as the endothe-
lium. This layer is crucial to the control of the normal function of the artery, through
its mediation of relaxation and contraction and via its control of smooth muscle cell
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Fig. 1.2. The illustration shows a cross-section of a coronary artery with plaque buildup. The
coronary artery is located on the surface of the heart. In A we see the deflated balloon catheter
inserted into the narrowed coronary artery. In B, the balloon is inflated, compressing the plaque
and restoring the size of the artery. Finally, C shows the widened artery. (Credit: US National
Heart Lung and Blood institute)

proliferation within the underlying media layer. The internal elastic lamina (a fenes-
trated layer of elastic tissue) forms the outermost part of the intima. The next layer
is the media (middle) region containing smooth muscle cells, collagen and elastin.
Finally, the outermost layer of the arterial wall is the adventitia, which is separated
from the media by the external elastic lamina. Essentially, the adventitia tethers the
artery to perivascular tissue, and contains cells known as fibroblasts. There is also
the presence of a network of small blood vessels, termed vasa vasorum, which act as a
blood supply to the adventitia and provide a clearance mechanism for drugs released
into the artery wall.

3. The mathematical model. To obtain a tractable mathematical model we
shall make certain assumptions about the structure of the arterial wall. The intima,
when it is devoid of the endothelium, has a similar structure to the media region and
for this reason we shall not include the intima as a separate region in the model.
Secondly, the adventitia is omitted since there is some evidence in the literature [30]
that the adventitia does not have a large effect on the cellular drug concentration
in the media region. The media consists of two phases: one of smooth muscle cells,
collagen and elastin surrounded by an interstitial (or extracellular) region (the second
phase). We treat the media as a porous region, where the porosity, φ ∈ (0, 1), is
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Fig. 2.1. The structure of the arterial wall.

defined as the ratio of the volume of interstitial space to the total volume. The
drug is known to have a partition coefficient, K, that is, the equilibrium ratio of
concentrations of a compound in two different phases, and we regard the drug as
interacting with the cells, but not diffusing within them. It is well accepted (see, for
example, [3]) that there is a transmural flow of plasma across the intima and through
the media causing the drug to convect. We shall assume the velocity of this flow, v, is
constant. The purpose of including the drug within the stent is to target and hence
inhibit the smooth muscle cells which constitute the neointima. Figure 3.1 provides a
diagrammatic sketch of the simplified physiology of the artery wall. Of course, these
assumptions are somewhat gross, but they do have the advantage that they allow
some progress towards an analytical solution rather than a purely numerical one.

We consider a stent coated with a thin layer (of thickness L) of polymer con-
taining a drug and embedded into the arterial wall (of thickness L1) as schematically
illustrated in Figure 3.1. We introduce c1(x, t) and c2(x, t) which denote, respectively,
the concentration of the drug in the interstitial region (of the media) and the concen-
tration of the drug within the cells. The drug concentration in the polymer, c(x, t), is
assumed to satisfy a diffusion equation with diffusion coefficient D while the transport
of drug through the media is governed by an advection-diffusion equation where the
transmural velocity of the plasma is denoted by v and D1 denotes the drug diffusion
coefficient through the interstitial region. We include an uptake equation, with drug
uptake rate constant α, to describe the uptake of drug into the cells within the tissue.
The mathematical model is

∂c

∂t
= D

∂2c

∂x2
, x ∈ (−L, 0), t > 0,(3.1)

D
∂c

∂x
= 0, x = −L, t > 0,(3.2)

c = c0, x ∈ [−L, 0], t = 0,(3.3)

D
∂c

∂x
= D1

∂c1

∂x
− vc1, x = 0, t > 0,(3.4)
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Fig. 3.1. Simplified geometry displaying stent impinged against media region containing smooth
muscle cells and extracellular space.

−D
∂c

∂x
= P (c − c1), x = 0, t > 0,(3.5)

φ
∂c1

∂t
+ v

∂c1

∂x
= D1

∂2c1

∂x2
− α(c1 − c2/K), x ∈ (0, L1), t > 0,(3.6)

c1, c2 bounded, x ∈ [0, L1], t ∈ [0,∞),(3.7)

c1 = c2 = 0, x ∈ [0, L1], t = 0,(3.8)

(1 − φ)
∂c2

∂t
= α(c1 − c2/K), x ∈ (0, L1), t > 0.(3.9)

This model assumes that the drug in the polymer is in a single phase which is per-
mitted to freely diffuse. This is appropriate where the initial concentration of drug
in the polymer is below solubility, in which case the dissolution of drug can be re-
garded as instantaneous [8]. If the initial concentration of drug in the polymer is
above solubility, then the drug may exist in two forms, crystalline and dissolved, with
only dissolved drug free to diffuse. An approximate solution to the problem of drug
release into an infinite sink for this case is provided by Higuchi [17]. Generalizations
of Higuchi’s work were considered by Biscari et al. [6] and Cohen and Erneux [9].
However, in some DES systems, it may well be the case that the initial concentration
of the drug in the polymer is above solubility. In this case, if diffusion is the govern-
ing step in the release process then our assumption is still valid [40]. In this paper
we focus on the polymer coated Cypher sirolimus-eluting stent (see Section 6 for a
description). We have conducted experiments within our laboratory which examine
in-vitro drug release from the Cypher stent. Figure 3.2 displays a comparison be-
tween the experimentally measured cumulative percentage of drug released, and the
widely published solution of (3.1-3.3) along with the condition c = 0 at x = 0 (see, for
example Crank [12]). The good agreement between the model and the experiments
serves to demonstrate that diffusion is the dominant mechanism of release, at least
for this particular stent. The best-fitting value of D based on a least squares analysis
was found to be of the order 10−16m2s−1.

We assume that the polymer rests against the bare metal of the stent and conse-
quently there is zero flux at x = −L. For simplicity the initial concentration within
the polymer is assumed to be some constant c0. At the polymer/tissue interface the
total flux is assumed to be continuous, and a top-coat on the polymer is allowed for
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Fig. 3.2. Comparison between in-vitro experimental data and diffusion based model of sirolimus
release from the Cypher stent. Briefly, the experiments consisted of placing four Cypher DESs in
separate sealed glass vials containing physiological release medium (phosphate buffered saline:ethanol
(90:10)). The experiments were carried out at 37 ◦C. At several time points up to 60 days, each
stent was removed and placed in a separate vial containing fresh release medium, with the mass of
drug in the original solution subsequently quantified using UV-spectroscopy.

via the condition (3.5), where, here, P denotes a parameter with units m s−1 (see
e.g. [33]). Equation (3.6) governs the movement of the drug in the interstitial region
of the media. Note that the ‘sink’ term represents the removal of drug to the cells.
Some existing models consider binding sites within the tissue (see e.g. [42], [7]). It
is certainly true that the drug will bind to binding sites in the tissue and in the cells
([42], [5], [27]), although the strength of affinity will likely vary substantially with the
particular drug under consideration and further, it is not clear how the density of
the binding sites may be easily determined. The uptake of drug into smooth muscle
cells has been measured experimentally (see, for example [46]). The model consid-
ered here does not account for binding sites in the extracellular matrix, but instead
considers cells within the tissue absorbing and releasing drug as the concentration
in the extracellular region changes. This idea is supported by the following authors
([1], [18]). It is worth stating that no boundary condition has been stipulated at the
media/adventitia interface. An argument could be made for imposing continuity of
the relative diffusive and convective fluxes across the interface, or simply that the
extracellular concentration falls to zero by the time the drug reaches the adventitia
region. These boundary conditions, and others, have been considered in the litera-
ture (for example [30], [47], [33]). However, in order to be able to obtain an analytical
solution, we do not state a boundary condition at x = L1, but instead impose the
condition that the concentration of drug in the extracellular region and the cells must
remain bounded for all x and t.

Since the system is linear, one obvious approach would be to solve directly using
Laplace transforms. However, it is readily seen that this approach leads to a Laplace
transform which is simply impractical to invert. Further, any attempt to proceed
with the inversion would necessarily involve extremely complicated transcendental
equations that must be solved for the roots. Thus we consider the following novel
approach to solving this problem. Consider a simpler hypothetical problem where we
assume that we know c1(0, t) in terms of a general function of t, say g(t). This will
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allow us to obtain the concentrations for the drug both in the cells and the interstitial
region (in terms of g(t)) and, as we shall see, reduce the problem of finding g(t) to
that of solving a Volterra integral equation.

We shall introduce the following non-dimensional variables:

t′ = (D1/L2
1)t, x′ = x/L1, c′ = c/c0, c′1 = c1/c0, c′2 = c2/c0,

so that the above model becomes (all primes have been omitted for reasons of clarity):

(3.1)′
∂c

∂t
= δ

∂2c

∂x2
, x ∈ (−ℓ, 0), t > 0,

(3.2)′
∂c

∂x
= 0, x = −ℓ, t > 0,

(3.3)′ c = 1, x ∈ [−ℓ, 0], t = 0,

(3.4)′ δ
∂c

∂x
=

∂c1

∂x
− Pe c1, x = 0, t > 0,

(3.5)′ − ∂c

∂x
= P̃ (c − c1), x = 0, t > 0,

(3.6)′ φ
∂c1

∂t
+ Pe

∂c1

∂x
=

∂2c1

∂x2
− Da(c1 − c2/K), x ∈ (0, 1), t > 0,

(3.7)′ c1, c2 bounded, x ∈ [0, 1], t > 0,

(3.8)′ c1 = c2 = 0, x ∈ [0, 1], t = 0,

(3.9)′ (1 − φ)
∂c2

∂t
= Da(c1 − c2/K), x ∈ (0, 1), t > 0.

Here δ = D/D1, ℓ = L/L1, P̃ = L1P/D, Pe = L1v/D1 (Peclet number) and
Da = L2

1α/D1 (Damkholer number).

4. An analytical solution. Consider the problem consisting of (3.6)′ – (3.9)′

together with c1(0, t) = g(t). We shall now apply Laplace transforms to equations
(3.6)′ and (3.9)′. We shall then discover, upon applying the complex inversion formula,
that the integrand has three branch points, requiring a modification of the usual
Bromwich contour and leading ultimately to an analytical solution in terms of the
unknown drug release concentration, g(t).

4.1. Solution in Laplace transform space. Rearranging (3.9)′ provides

∂c2

∂t
(x, t) +

γ

K
c2(x, t) = γc1(x, t),(4.1)

where

γ =
Da

1 − φ
.

Solving (4.1) subject to the initial condition gives

c2(x, t) = γ

∫ t

0

e−γ(t−t′)/K c1(x, t′) dt′.(4.2)

After substituting (4.2) into (3.6)′, we obtain

φ
∂c1

∂t
(x, t)+Pe

∂c1

∂x
(x, t) =

∂2c1

∂x2
(x, t)−Da

(

c1(x, t) − γ

K

∫ t

0

e−γ(t−t′)/K c1(x, t′) dt′
)

.

(4.3)
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Define the Laplace transform of ci(x, t) (i = 1, 2) with respect to t:

c̄i(x, s) =

∫

∞

0

e−st ci(x, t) dt.

Now, taking Laplace transforms of (4.3) yields, after making use of the initial condition
and rearranging,

d2c̄1

dx2
(x, s) − Pe

dc̄1

dx
(x, s) − Γ(s)c̄1(x, s) = 0,(4.4)

where

Γ(s) =
φKs

(

s + γ
K + Da

φ

)

Ks + γ
.(4.5)

Solving (4.4) subject to c1(0, t) = g(t) and the boundedness of c1(x, t), we obtain

c̄1(x, s) = ḡ(s) exp

{

xPe

2

}

exp
{

−x

2

√

Pe2 + 4Γ(s)
}

,(4.6)

where ḡ(s) =

∫

∞

0

e−stg(t)dt. Using the definition of Γ(s) from (4.5), it is possible to

re-write (4.6) in a more transparent form which clearly displays the dependence on s:

c̄1(x, s) = ḡ(s) exp

{

xPe

2

}

exp







−x
√

φ

√

(s + s1) (s + s2)

s + s3







,(4.7)

where

2s1,2 =
γ

K
+

Da

φ
+

Pe2

4φ
∓

√

(

γ

K
+

Da

φ
+

Pe2

4φ

)2

− γPe2

φK
,(4.8)

s3 =
γ

K
.(4.9)

Finally, taking the Laplace transform of (4.2) (and using convolution) allows us to
write down the solution of c2 in Laplace transform space:

c̄2(x, s) =
γ

s + s3
c̄1(x, s)

=
γḡ(s)

(s + s3)
exp

{

xPe

2

}

exp







−x
√

φ

√

(s + s1) (s + s2)

s + s3







.

(4.10)

4.2. Solution via complex inversion formula. It will be convenient first to
determine the inverse of the following Laplace transform

f̄(s) =
exp

{

−x
√

φ
√

(s+s1)(s+s2)
(s+s3)

}

s
,(4.11)
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Fig. 4.1. Modified Bromwich Contour. Note that the circles centered on −s1,−s3 and −s2

have radii ǫ1, ǫ3 and ǫ2, respectively. A, B,..N,O are defined in the appendix.

that is, by the complex inversion formula, we require

f(t) = L−1[f̄(s)] =
1

2πi

∫ β+i∞

β−i∞

exp
{

st − x
√

φ
√

(s+s1)(s+s2)
(s+s3)

}

s
ds.(4.12)

To evaluate (4.12) we consider the modified Bromwich contour in Figure 4.1. We
observe that the integrand of (4.12) has a simple pole at s = 0 and three branch
points at −s1,−s3 and −s2. We shall later demonstrate that the typical values of
the parameters characterizing the model are such that 0 < s1 < s3 < s2. Thus a
branch cut has been made along the negative real axis. The details of the inversion
are provided in the appendix. The solution f(t) turns out to be

f(t) = exp

{

−x

√

φs1s2

s3

}

− 1

π
(I1 + Ĩ1)(4.13)

where

I1 =

∫

∞

s2

e−ut sin(a(u)x)

u
du, Ĩ1 =

∫ s3

s1

e−ut sin(a(u)x)

u
du(4.14)

with

a(u) =

√

φ(u − s1)(u − s2)

(u − s3)
.(4.15)
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Note that we can rewrite (4.7) as

c̄1(x, s) = exp

(

xPe

2

)

s ḡ(s) f̄(s).(4.16)

An application of the convolution theorem to (4.16) and integration by parts results
in

c1(x, t) = exp

(

xPe

2

)



g(t) exp

{

−x

√

φs1s2

s3

}

−
g(t)

(

I2 + Ĩ2

)

π
+

I3 + Ĩ3

π





(4.17)

where

I2 =

∫

∞

s2

sin(a(u)x)

u
du, Ĩ2 =

∫ s3

s1

sin(a(u)x)

u
du

and

I3 =

∫

∞

s2

∫ t

0

g(t′)e−u(t−t′) sin(a(u)x) dt′du, Ĩ3 =

∫ s3

s1

∫ t

0

g(t′)e−u(t−t′) sin(a(u)x) dt′du.

A further application of the Convolution Theorem to (4.10) then yields

c2(x, t) = γ exp

(

xPe

2

)

[

exp

{

−x

√

φs1s2

s3

}

I4 −
I5 + Ĩ5

π
+

I6 + Ĩ6

π

]

(4.18)

where

I4 =

∫ t

0

g(t′)e−s3(t−t′)dt′,

I5 =

∫

∞

s2

∫ t

0

g(t′)e−s3(t−t′) sin(a(u)x)

u
dt′du, Ĩ5 =

∫ s3

s1

∫ t

0

g(t′)e−s3(t−t′) sin(a(u)x)

u
dt′du

and

I6 =

∫

∞

s2

∫ t

0

∫ τ

0

g(t′)e−u(τ−t′)e−s3(t−τ) sin(a(u)x) dt′dτdu,

Ĩ6 =

∫ s3

s1

∫ t

0

∫ τ

0

g(t′)e−u(τ−t′)e−s3(t−τ) sin(a(u)x) dt′dτdu.

5. A Volterra integral equation. We have obtained c1(x, t) and c2(x, t) in
terms of the arbitrary function g(t). The object now is to determine g(t). Consider
the problem

∂c

∂t
= δ

∂2c

∂x2
, x ∈ (−ℓ, 0), t > 0,(5.1)

∂c

∂x
= 0, x = −ℓ, t > 0,(5.2)

c = 1, x ∈ [−ℓ, 0], t = 0,(5.3)

δ
∂c

∂x
=

∂c1

∂x
− Pe c1, x = 0, t > 0,(5.4)

− ∂c

∂x
= P̃ (c − c1), x = 0, t > 0,(5.5)
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where we intend to replace c1(0, t) by g(t). If we were able to determine ∂c1(0, t)/∂x
(and hence ∂c(0, t)/∂x) then (5.1)–(5.5) would be over-determined. This “over-
determinedness” could then be used to find an expression for g(t). However, it is
not difficult to see that ∂c1(0, t)/∂x is not defined: this is a direct consequence of
the discontinuity in the boundary and initial condition at x = 0 and t = 0 of the
model defined by (3.1)–(3.9). A form of regularization is required. We have chosen
to approximate ∂c1(0, t)/∂x by utilising the solution of the corresponding problem of
purely diffusion in a semi-infinite composite region. To be precise here, we mean the
solution obtained by solving (3.1)′ to (3.7)′ where [0, 1] has been replaced by [0,∞),
φ = 1 and Pe and Da have been taken to be zero. It can be readily shown that, in
this case,

∂c1(0, t)

∂x
=

P̃
√

δ

π

∫

∞

0

B sin
(

l
√

u/δ
)

exp (−ut)
√

u (A2 + B2)
du,

= j(t), say,

where

A = P̃ cos
(

l
√

u/δ
)

−
(

√

u/δ
)

sin
(

l
√

u/δ
)

and

B = P̃
√

δ sin
(

l
√

u/δ
)

.

Thus, we regularize by replacing (5.4) by

δ
∂c

∂x
= j(t) − Pe c1, x = 0, t > 0.(5.6)

Consider the further transformation of the independent variables

t′ = (δ/ℓ2)t, x′ =

(

x + ℓ

ℓ

)

,(5.7)

so that equations (5.1)–(5.3), (5.5) and (5.6) become

∂c

∂t
=

∂2c

∂x2
, x ∈ (0, 1), t > 0,(5.8)

∂c

∂x
= 0, x = 0, t > 0,(5.9)

c = 1, x ∈ [0, 1], t = 0,(5.10)

∂c

∂x
=

ℓ

δ
j(t) − ℓPe

δ
g(t), x = 1, t > 0,(5.11)

− ∂c

∂x
= P ∗(c − g(t)), x = 1, t > 0,(5.12)

where P ∗ = ℓP̃ = LP/D. Again, the primes have been omitted for clarity. We are
now in a position to write down two problems and their associated solutions.
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Problem 1

∂c

∂t
=

∂2c

∂x2
, x ∈ (0, 1), t > 0,(5.13)

∂c

∂x
= 0, x = 0, t > 0,(5.14)

c = 1, x ∈ [0, 1], t = 0,(5.15)

∂c

∂x
=

ℓ

δ
j(t) − ℓPe

δ
g(t), x = 1, t > 0.(5.16)

The following solution may be obtained from either an application of Laplace trans-
forms or separation of variables with Duhamel’s theorem:

c(x, t) = 1− ℓ

δ

∫ t

0

(Pe g(τ) − j(τ))

[

1 + 2

∞
∑

n=1

(−1)n exp(−n2π2(t − τ)) cos(nπx)

]

dτ.

(5.17)

Problem 2

∂c

∂t
=

∂2c

∂x2
, x ∈ (0, 1), t > 0,(5.18)

∂c

∂x
= 0, x = 0, t > 0,(5.19)

c = 1, x ∈ [0, 1], t = 0,(5.20)

−∂c

∂c
= P ∗(c − g(t)), x = 1, t > 0.(5.21)

In a similar manner the following solution may be obtained:

c(x, t) = 2P ∗

∞
∑

n=0

exp(−ξ2
nt) cos(ξnx)

ξn[(1 + P ∗) sin ξn + ξn cos ξn]

+2P ∗

∫ t

0

g(τ)
∞
∑

n=0

ξn exp(−ξ2(t − τ)) cos(ξnx)

[(1 + P ∗) sin ξn + ξn cos ξn]
dτ(5.22)

where ξn, n = 0, 1, 2, . . . are the countably infinite roots of

ξ tan ξ = P ∗.(5.23)

The two solutions (5.17) and (5.22) must be identical, i.e. valid for all values of
x ∈ [0, 1] and t > 0. We shall select to equate the two integrals (over x) of (5.17)
and (5.22). The physical significance of this is that we are effectively equating the
respective expressions for the mass of drug on the stent. Thus

2P ∗

∞
∑

n=0

exp(−ξ2
n t)

ξn[(1 + P ∗) sin ξn + ξn cos ξn]

∫ 1

0

cos(ξn x)dx

+ 2P ∗

∫ t

0

g(τ)

∞
∑

n=0

ξn exp(−ξ2
n(t − τ))

[(1 + P ∗) sin ξn + ξn cos ξn]

∫ 1

0

cos(ξn x)dx dτ

= 1 − ℓ

δ

∫ t

0

(Pe g(τ) − j(τ))

[

1 + 2

∞
∑

n=1

(−1)n exp(−n2π2(t − τ))

∫ 1

0

cos(nπx)dx

]

dτ
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and so

2P ∗

∞
∑

n=0

exp(−ξ2
n t) sin ξn

ξ2
n[(1 + P ∗) sin ξn + ξn cos ξn]

+ 2P ∗

∫ t

0

g(τ)
∞
∑

n=0

exp(−ξ2
n(t − τ)) sin ξn

[(1 + P ∗) sin ξn + ξn cos ξn]
dτ

= 1 − ℓ

δ

∫ t

0

(Pe g(τ) − j(τ)) dτ.

(5.24)

Differentiating with respect to t gives

−2P ∗

∞
∑

n=0

exp(−ξ2
n t) sin ξn

[(1 + P ∗) sin ξn + ξn cos ξn]
+ 2P ∗

(

g(t)

∞
∑

n=0

sin ξn

[(1 + P ∗) sin ξn + ξn cos ξn]

−
∫ t

0

g(t)

∞
∑

n=0

ξ2
n exp(−ξ2

n(t − τ)) sin ξn

[(1 + P ∗) sin ξn + ξn cos ξn]
dτ

)

(5.25)

= − ℓ

δ
(Pe g(t) − j(t)) .

Re-arranging yields

{

2P ∗

∞
∑

n=0

sin ξn

[(1 + P ∗) sin ξn + ξn cos ξn]
+

ℓPe

δ

}

g(t)

=

∫ t

0

{

2P ∗

∞
∑

n=0

ξ2
n exp(−ξ2

n(t − τ)) sin ξn

[(1 + P ∗) sin ξn + ξn cos ξn]

}

g(τ)dτ

+ 2P ∗

∞
∑

n=0

exp(−ξ2
n t) sin ξn

[(1 + P ∗) sin ξn + ξn cos ξn]
+

ℓ

δ
j(t)

(5.26)

Solving this integral equation for g(t) allows us to determine c1(x, t) and c2(x, t)
through the analytical solutions obtained in Section 4. The concentration of drug
within the polymer may then be obtained either from (5.17) or (5.22).

6. Parameter values. A common difficulty when modeling physiological pro-
cesses is in obtaining estimates of the model parameters. Experimentation is often
prohibitively expensive or simply not possible in vivo and it is therefore usual to draw
data from different studies in the literature. We refer to [30], where an extensive
literature search was performed to obtain estimates of the various parameters associ-
ated with drug elution from stents into arterial tissue. In this paper we will consider
the non-erodible polymer coated Cypher sirolimus-eluting stent. We have chosen this
particular stent system since it contains a drug-filled polymer coating and the mech-
anism of release is generally accepted to be diffusion. Thus this stent is well suited
to our modeling assumptions. The Cypher stent coating is a blend of poly-ethylene-
co-vinyl acetate (PEVA), poly-n-butyl methacrylate (PBMA) and the drug sirolimus.
The coating is applied on a poly-o-chloro-p-xylylene (parylene-C) treated stainless
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Parameter Symbol Value

Media Porosity φ 0.61
Media Thickness L1 4.5 × 10−4m

Media Diffusion Coefficient D1 2.5 × 10−10m2s−1

Drug Uptake Rate Constant α 2 × 10−5s−1

Partition Coefficient K 15
Transmural Velocity v 5.8 × 10−8ms−1

Polymer Diffusion Coefficient D 10−16m2s−1

Permeability of Topcoat P 10−8ms−1

Polymer Thickness L 1.26 × 10−5m
Table 6.1

Table of parameter values based on McGinty et al. [30], Tzafriri et al. [42] and Pontrelli & de
Monte [33] [34].

steel stent. The manufacture of the Cypher consists of applying a basecoat solution
containing PEVA, PBMA and the drug. An inactive topcoat and toulene spray is
then applied. As a result of the mixing and drying process, drug is actually trans-
ported to the topcoat layer so that the drug-free topcoat is never actually realised
[4]. Most of the newer generation stents also make use of limus compounds [22]. To
consider different compounds in our model we would simply require measurements of
the drug-dependent parameters. The value of media porosity is taken directly from
[30]. The polymer thickness is taken from [11] and the diffusion coefficient of sirolimus
in the Cypher stent has been measured in our laboratory to be of order 10−16m2s−1,
while the values of the media diffusion coefficient of sirolimus, media thickness and
transmural velocity have been taken from [42]. The value of the parameter P has been
taken from [33] whilst the values of the drug uptake constant and partition coefficient
of sirolimus have been estimated based on [30]. Using the parameter values in Table
6.1, we find that s1 = 3.7010× 10−4, s2 = 0.0334, s3 = 0.0028 to four decimal places,
satisfying 0 < s1 < s3 < s2.

7. Solution of the integral equation. Consider the discretization {tm =
mh, h = T/M, m = 0, 1, . . .M} and the associated vector (g0, g1, . . . , gm) approxi-
mating (g(0), g(t1), . . . , g(tm)). We employ an explicit Euler-type method

{

2P ∗

∞
∑

n=0

sin ξn

[(1 + P ∗) sin ξn + ξn cos ξn]
+

ℓPe

δ

}

gm

= h
m−1
∑

j=0

{

2P ∗

∞
∑

n=0

ξ2
n exp(−ξ2

n(m − j)h) sin ξn

[(1 + P ∗) sin ξn + ξn cos ξn]

}

gj(7.1)

+ 2P ∗

∞
∑

n=0

exp(−ξ2
nmh) sin ξn

[(1 + P ∗) sin ξn + ξn cos ξn]
+

ℓ

δ
Wm,

with

g0 = g(0) =
2P ∗Ψ(ξ) + ℓW0/δ

2P ∗Ψ(ξ) + ℓPe
δ

,(7.2)

where

Ψ(ξ) =

∞
∑

n=0

sin ξn

[(1 + P ∗) sin ξn + ξn cos ξn]
.
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Before the discrete equation (7.1) can be solved, the roots of ξ tan ξ = P ∗ are required.
These have been obtained using a bisection approach. The infinite sums in (7.1) were
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Fig. 7.1. g(t) = c1(0, t) over the first day as calculated from (5.26).

truncated after the first 20 terms and then, using the calculated roots, the finite
difference equation (7.1) was solved. Figure 7.1 displays g(t) = c1(0, t) over the first
day.

Now that g(t) has been obtained, we can utilise this g(t) in solution (4.17) and
(4.18) to obtain the concentration of drug in the extracellular and cellular regions and
these are displayed in Figures 7.2 and 7.3.

8. Drug mass within the tissue. The total mass of drug in the media re-
gion at time t is given by integrating the expressions for cellular and extracellular
concentration over the length of the media. In non-dimensional terms, this equates
to

M(t) =

∫ 1

0

φ c1(x, t) dx +

∫ 1

0

(1 − φ) c2(x, t) dx.(8.1)

Again, for convenience, the primes are suppressed.
Figure 8.1 displays the variation in mass of drug within the tissue over a period

of 10 days following stent deployment, using high-order global adaptive quadrature
to evaluate the integrals. We see that most of the mass is contained out-with the
extracellular space, due to the high partition coefficient of the drug. We have made
two further assumptions in producing these plots. Firstly, it is assumed that all of the
drug is eluted from the stent, i.e. no drug is retained within the polymer. There is
some evidence in the literature that for some drug-eluting stents, not all of the drug is
eluted and in fact some of the drug remains trapped in the stent. An example of such
a stent is the paclitaxel-eluting TaxusTM stent which is also a polymer coated stent.
Experiments in our laboratory have revealed that for the sirolimus coated Cypher
stent at least 99% of the drug is eluted in vitro within the first three months, which
justifies this assumption. The second assumption is that all of the drug released from
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Fig. 7.2. Variation in extracellular concentration with time, subject to g(t) obtained from the
solution of the Volterra integral equation.
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Fig. 7.3. Variation in cellular concentration with time, subject to g(t) obtained from the solution
of the Volterra integral equation.

the stent diffuses into the tissue. This assumption may be reasonable where the stent
protrudes into the arterial wall.

9. Concluding remarks. In this paper we have developed analytical solutions
for release of drug from a polymer coated stent into the arterial wall. By assuming
initially that the drug release concentration at the polymer/tissue interface, g(t), is
known, we have been able to derive a Volterra integral equation, which allows us to
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Fig. 8.1. Variation in mass of drug in the media with time, subject to g(t) obtained from the
solution of the Volterra integral equation

consider g(t) as a variable of our model. Upon solving the integral equation for g(t)
we have been able to determine the drug concentration profiles in the extracellular
and cellular regions of the arterial wall. Furthermore, we have calculated the mass of
drug in each region over the period of release.

We feel it appropriate to comment on the limitations of our model. We have con-
sidered a one-dimensional model which, while making it difficult to generate quantita-
tive results, nonetheless allow us to obtain qualitative results. However, primarily due
to the regularization there is a negligible amount of mass loss. Furthermore, the model
assumes that the main mechanism of release is diffusion. The problem of modeling ar-
terial stents is very much an active field of research. The process of drug-release from
the stent in vitro is still not fully understood, let alone the complex in vivo situation
where flowing blood, pulsatility, wound healing, proliferation, migration of cells and
complex uptake/binding no doubt all play some part. While we do not claim to have
addressed all these issues, we believe that simple models which can admit analytical
solutions, like the one presented here, have a part to play in addressing this complex
problem.
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Appendix. Solution via complex inversion formula. Consider the following
integral:

f(t) =
1

2πi

∫ β+i∞

β−i∞

exp

{

st − x
√

φ
√

(s+s1)(s+s2)
s+s3

}

s
ds.

=
1

2πi

∫ β+i∞

β−i∞

estf̄(s)ds.(A.1)

To evaluate (A.1), consider the modified Bromwich contour in Figure 4.1. Notice that
the integrand of (A.1) has a simple pole at s = 0 and three separate branch points
at −s1, −s3 and −s2. For the parameter values considered, it is always the case that
0 < s1 < s3 < s2. Thus a branch cut has been made along the negative real axis (see
Figure 4.1).

Now,

1

2πi

∮

C

estf̄(s)ds

=
1

2πi

∫

AB

estf̄(s)ds +
1

2πi

∫

BC

estf̄(s)ds +
1

2πi

∫

CD

estf̄(s)ds

+
1

2πi

∫

DE

estf̄(s)ds +
1

2πi

∫

EF

estf̄(s)ds +
1

2πi

∫

FG

estf̄(s)ds

+
1

2πi

∫

GH

estf̄(s)ds +
1

2πi

∫

HJ

estf̄(s)ds +
1

2πi

∫

JK

estf̄(s)ds

+
1

2πi

∫

KL

estf̄(s)ds +
1

2πi

∫

LM

estf̄(s)ds +
1

2πi

∫

MN

estf̄(s)ds

+
1

2πi

∫

NO

estf̄(s)ds +
1

2πi

∫

OA

estf̄(s)ds

= Res(s = 0)(A.2)

so that there are fifteen integrals to consider. It can be readily shown that as R → ∞,
the integrals over BC and OA vanish.
Along CD, let s = u eiθ, θ = π, s + s1 = u1 eiθ1 , θ1 = π, s + s2 = u2 eiθ2 , θ2 = π,

s + s3 = u3 eiθ3 , θ3 = π, from s = −R to s = −s2 − ǫ2:

1

2πi

∫

CD

estf(s)ds

=
1

2πi

∫

−s2−ǫ2

−R

estf(s)ds

=
1

2πi

∫ ǫ2+s2

R

exp
{

−ut − x
√

φ
√

u1eiπu2eiπ

u3eiπ

}

−u
(−du)

=
1

2πi

∫ ǫ2+s2

R

exp
{

−ut − ix
√

φ
√

u1u2

u3

}

u
du,

=
1

2πi

∫ ǫ2+s2

R

exp

{

−ut− ix
√

φ
√

(u−s1)(u−s2)
u−s3

}

u
du.(A.3)
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Along DE, the point −s2 is moved to the origin by writing s = ǫ2e
iθ − s2,

ds = iǫ2e
iθdθ. Thus

1

2πi

∫

DE

estf(s)ds

=
ǫ2
2π

∫ 0

π

exp
{

(

ǫ2e
iθ − s2

)

t − x
√

φ
√

ǫ2e
iθ/2
√

ǫ2eiθ+s1−s2

ǫ2eiθ−s2+s3

+ iθ
}

ǫ2eiθ − s2
dθ

→ 0 as ǫ2 → 0.(A.4)

Along EF , let s = u eiθ, θ = π, s + s1 = u1 eiθ1 , θ1 = π, s + s2 = u2 eiθ2 , θ2 = 0,

s + s3 = u3 eiθ3 , θ3 = π, from s = −s2 + ǫ2 to s = −s3 − ǫ3:

1

2πi

∫

EF

estf(s)ds

=
1

2πi

∫

−s3−ǫ3

−s2+ǫ2

estf(s)ds

=
1

2πi

∫ s3+ǫ3

s2−ǫ2

exp

{

−ut − x
√

φ
√

(u−s1)(s2−u)
u−s3

}

u
du.(A.5)

Along FG, the point −s3 is moved to the origin by writing s = ǫ3e
iθ − s3,

ds = iǫ3e
iθdθ. Thus

1

2πi

∫

FG

estf(s)ds

=
ǫ3
2π

∫ 0

π

exp

{ (

ǫ3e
iθ − s3

)

t

−x
√

φ
ǫ3

e−iθ/2
√

(ǫ3eiθ + s1 − s3) (ǫ3eiθ − s3 + s2) + iθ

}

ǫ3eiθ − s3
dθ

→ 0 as ǫ3 → 0.

(A.6)

Along GH , let s = u eiθ, θ = π, s + s1 = u1 eiθ1 , θ1 = π, s + s2 = u2 eiθ2 , θ2 = 0,

s + s3 = u3 eiθ3 , θ3 = 0, from s = −s3 + ǫ3 to s = −s1 − ǫ1:

1

2πi

∫

GH

estf(s)ds

=
1

2πi

∫

−s1−ǫ1

−s3+ǫ3

estf(s)ds

=
1

2πi

∫ s1+ǫ1

s3−ǫ3

exp

{

−ut− ix
√

φ
√

(u−s1)(s2−u)
s3−u

}

u
du.(A.7)

Along HJ , the point −s1 is moved to the origin by writing s = ǫ1e
iθ − s1,
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ds = iǫ1e
iθdθ. Thus

1

2πi

∫

HJ

estf(s)ds

=
ǫ1
2π

∫

−π

π

exp
{

(

ǫ1e
iθ − s1

)

t − x
√

φ
√

ǫ1e
iθ/2
√

ǫ1eiθ
−s1+s2

ǫ1eiθ
−s1+s3

+ iθ
}

ǫ1eiθ − s1
dθ

→ 0 as ǫ1 → 0.(A.8)

Along JK, let s = u eiθ, θ = −π, s + s1 = u1 eiθ1 , θ1 = −π, s + s2 = u2 eiθ2 , θ2 = 0,

s + s3 = u3 eiθ3 , θ3 = 0, from s = −s1 − ǫ1 to s = −s3 + ǫ3:

1

2πi

∫

JK

estf(s)ds

=
1

2πi

∫

−s3+ǫ3

−s1−ǫ1

estf(s)ds

=
1

2πi

∫ s3−ǫ3

s1+ǫ1

exp

{

−ut + ix
√

φ
√

(u−s1)(s2−u)
s3−u

}

u
du.(A.9)

Along KL, the point −s3 is moved to the origin by writing s = ǫ3e
iθ − s3,

ds = iǫ3e
iθdθ. Thus

1

2πi

∫

KL

estf(s)ds

=
ǫ3
2π

∫

−π

0

exp

{ (

ǫ3e
iθ − s3

)

t

−x
√

φ
ǫ3

e−iθ/2
√

(ǫ3eiθ + s1 − s3) (ǫ3eiθ − s3 + s2) + iθ

}

ǫ3eiθ − s3
dθ

→ 0 as ǫ3 → 0.

(A.10)

Along LM , let s = u eiθ, θ = −π, s + s1 = u1 eiθ1 , θ1 = −π, s + s2 = u2 eiθ2 , θ2 = 0,

s + s3 = u3 eiθ3 , θ3 = −π, from s = −s3 − ǫ3 to s = −s2 + ǫ2:

1

2πi

∫

LM

estf(s)ds

=
1

2πi

∫

−s2+ǫ2

−s3−ǫ3

estf(s)ds

=
1

2πi

∫ s2−ǫ2

s3+ǫ3

exp

{

−ut− x
√

φ
√

(u−s1)(s2−u)
u−s3

}

u
du.(A.11)

Along MN , the point −s2 is moved to the origin by writing s = ǫ2e
iθ − s2,

ds = iǫ2e
iθdθ. Thus

1

2πi

∫

MN

estf(s)ds
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=
ǫ2
2π

∫

−π

0

exp
{

(

ǫ2e
iθ − s2

)

t − x
√

φ
√

ǫ2e
iθ/2
√

ǫ2eiθ+s1−s2

ǫ2eiθ−s2+s3

+ iθ
}

ǫ2eiθ − s2
dθ

→ 0 as ǫ2 → 0.(A.12)

Along NO, let s = u eiθ, θ = −π, s + s1 = u1 eiθ1 , θ1 = −π,

s + s2 = u2 eiθ2 , θ2 = −π, s + s3 = u3 eiθ3 , θ3 = −π, from s = −s2 − ǫ2 to s = −R

1

2πi

∫

NO

estf(s)ds

=
1

2πi

∫

−R

−s2−ǫ2

estf(s)ds

=
1

2πi

∫ R

s2+ǫ2

exp

{

−ut + ix
√

φ
√

(u−s1)(u−s2)
u−s3

}

u
du.(A.13)

Now, the residue at the simple pole s = 0 is

lim
s→0

s exp

{

st − x
√

φ
√

(s+s1)(s+s2)
s+s3

}

s
= exp

{

−x

√

φs1s2

s3

}

.(A.14)

By the Residue Theorem,

1

2πi

∮

C

estf(s)ds = exp

{

−x

√

φs1s2

s3

}

.(A.15)

Hence, with the integrals along BC, DE, FG, HJ , KL, MN and OA tending to zero
in the limit, and with the integrals along EF and LM cancelling through addition,
the only contributions are those from the integrals along CD, GH , JK and NO.
Thus, (A.2) reduces to

1

2πi

∫

AB

estf(s)ds

= exp

{

−x

√

φs1s2

s3

}

− 1

2πi
lim

R→∞,ǫ1,2,3→0







∫

CD
estf(s)ds +

∫

GH
estf(s)ds

+
∫

JK
estf(s)ds +

∫

NO
estf(s)ds







= exp

{

−x

√

φs1s2

s3

}

− 1

π















∫

∞

s2

e−ut

u sin

(

x
√

φ
√

(u−s1)(u−s2)
u−s3

)

du

+
∫ s3

s1

e−ut

u sin

(

x
√

φ
√

(u−s1)(s2−u)
s3−u

)

du















.(A.16)

The solutions for c1 and c2 follow directly from (A.16) using convolution.
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