Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Automated image stitching for enhanced visual inspections of nuclear power stations

Murray, Paul and West, Graeme and Marshall, Stephen and McArthur, Stephen (2013) Automated image stitching for enhanced visual inspections of nuclear power stations. In: 10th International Conference on Condition Monitoring and Machinery Failure Prevention Technologies 2013 (CM 2013 AND MFPT 2013). British Institute of Non-Destructive Testing, Northampton, UK. ISBN 9781629939926

[img]
Preview
Text (Murray-etal-CMMFPT-2013-Automated-image-stitching-for-enhanced-visual-inspections)
Murray_etal_CMMFPT_2013_Automated_image_stitching_for_enhanced_visual_inspections.pdf - Accepted Author Manuscript

Download (466kB) | Preview

Abstract

In the UK, visual inspection of the fuel channels of the Advanced Gas-cooled Reactor (AGR) nuclear power stations forms an integral part of understanding the health of the reactor cores. During a statutory outage, video footage of the inside of selected fuel channels is recorded. Features of interest and anomalies are manually identified by an expert who extracts frames from the video to create a composite image for the feature of interest. This is a laborious and time consuming process which can be costly to station operators who must produce these images before returning the station to service. This paper describes an automatic technique capable of generating a 2D image of the entire internal bore of the channel. The technique uses the position of the camera coupled with advanced image processing techniques to generate a high-resolution image of the whole channel. This allows surface details to be viewed in relation to each other, and the rest of the channel, while facilitating a direct comparison of any anomalies over time. In addition, the time taken by this automated technique to produce a full core image is a fraction of that taken to manually stitch an image for a much smaller area.