Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Well-Founded Semantics for Extended Datalog and Ontological Reasoning

Kupke, Clemens and Gottlob, Georg and Lukasiewicz, Thomas and Hernich, Andre (2013) Well-Founded Semantics for Extended Datalog and Ontological Reasoning. In: Proceedings of the 32nd Symposium on Principles of Database Systems. ACM, New York, NY, New York, pp. 225-236. ISBN 978-1-4503-2066-5

[img] PDF
paper_78.pdf - Accepted Author Manuscript

Download (328kB)

Abstract

The Datalog± family of expressive extensions of Datalog has recently been introduced as a new paradigm for query answering over ontologies, which captures and extends several common description logics. It extends plain Datalog by features such as existentially quantified rule heads and, at the same time, restricts the rule syntax so as to achieve decidability and tractability. In this paper, we continue the research on Datalog±. More precisely, we generalize the well-founded semantics (WFS), as the standard semantics for nonmonotonic normal programs in the database context, to Datalog± programs with negation under the unique name assumption (UNA). We prove that for guarded Datalog± with negation under the standard WFS, answering normal Boolean conjunctive queries is decidable, and we provide precise complexity results for this problem, namely, in particular, completeness for PTIME (resp., 2-EXPTIME) in the data (resp., combined) complexity.