Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

The feasibility of synthetic aperture guided wave imaging to a mobile sensor platform

Dobie, Gordon and Pierce, S. Gareth and Hayward, Gordon (2013) The feasibility of synthetic aperture guided wave imaging to a mobile sensor platform. NDT and E International, 58. pp. 10-17. ISSN 0963-8695

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

A mobile sensor platform that features a non-contact guided wave piezoelectric composite transducer payload for rapid inspection of large plate-like structures is presented. The paper begins with results from an experimental B-scan of an aluminium plate. Since the current guided wave payload uses 30 mm square transducers (9λ9λ wide) the system provides fairly course lateral resolution that in this case is approximately equal to the width of the transducer. The paper goes on to use simulation tools to examine the practical SNR and resolution limits of this approach. When using narrow aperture transducers that provide a wide field of view it is important to apply the synthetic aperture focusing technique to maximise image resolution. It is shown that resolution is a function of both transducer aperture and robot positional uncertainty since the effectiveness of synthetic aperture techniques is directly dependent on positional accuracy. It is also shown that since systems utilising larger aperture transducers with a narrow field of view are not as dependent on synthetic array reconstruction, they can outperform systems with narrower transducers in cases where there is relatively large positional uncertainty. Lastly the resolution and relative SNR are modelled as functions of transducer aperture for the cases of B-scan and synthetic array processing.