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In this study, the effect of different tip angles (30°, 60°, 90° and 120°) on the arc and weld pool behavior
is analyzed in 2 mm and 5 mm arc lengths with tilted (70°) torch. Arc temperature, velocity, current
density, heat flux and gas shear are investigated in the arc region and pool convection and puddle shapes

Tip angle N ) ’ h
Elgctrogde tip are studied in the weld pool region. The arc temperature at the tungsten electrode is found the maximum
Weld pool with sharp tip and decreases as the tip angle increases. The arc temperature on the anode (workpiece)

surface becomes concentrated with increase in tip angle. The arc velocity and gas shear stress are
observed large with sharp tip and decreasing as the tip angle increases. Current density on the anode
surface does not change with tip angle and observed almost the same in all the tip angles in both 2 mm
and 5 mm arc lengths. Heat flux due to conduction and convection is observed more sensitive to the tip
angle and decreases as the tip angle increases. The electromagnetic force is slightly observed increasing
and the buoyancy force is observed slightly decreasing with increase in tip angle. Analyzing each driving
force in the weld pool individually shows that the gas drag and Marangoni forces are much stronger than
the electromagnetic and buoyancy forces. The weld pool shape is observed wide and shallow in sharp
and narrow and deep in large tip angle. Increasing the arc length does not change the weld pool width;
however, the weld pool depth significantly changes with arc length and is observed deep in short arc
length. The arc properties and weld pool shapes are observed wide ahead of the electrode tip in the weld
direction due to 70° torch angle. Good agreement is observed between the numerical and experimental
weld pool shapes.

Heat and fluid flow

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Gas tungsten arc welding process (GTAW) is widely used in the
industry to weld large number of metals and alloys with or without
the filler material at any position. The torch position plays an
important role in determining the weld pool quality. Similarly,
different groove geometries (narrow to shallow) are welded
effectively by using appropriate electrode tip angle.

Different researchers studied the electrode tip geometry in
stationary, axisymmetric GTAW process to investigate the arc and
weld pool behavior. Tsai and Kou [1] presented a steady state, two-
dimensional model for GTAW to describe heat transfer and fluid
flow in the arc produced by the flat and sharpened electrodes.
Current density distribution, electromagnetic force, velocity and
temperatures were investigated in the arc plasma. It was found that
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with flat tip, the arc velocity and pressure was low as compared to
the sharp tip. The temperature distribution in the arc column was
constricted in case of flat tip and it was found that the presence of
the gas nozzle did not produce any change in the velocity and
temperature distribution. Haidar and Farmer [2] experimentally
determined the effect of tip angle on the arc temperatures. For tip
angles greater than 60°, the tip area was more uniform and hence
the resultant plasma temperatures were more uniformly distrib-
uted and found to be less than 60° tip angle. Similarly, for tip angles
less than 60°, the heating was more due to the sharp tip area. This
heating produced thermionic emission which resulted in a more
uniform temperature on sharp tips. The maximum plasma tem-
peratures were therefore found the maximum for 60° tip. Ukita
et al. [3] experimentally investigated the effect of tip geometry and
torch angle on high speed DCEN TIG welding of ultra-thin
aluminum sheets. The tip geometries were conical, conical—
spherical and ball end. It was concluded that in ultrahigh speed
welding of ultra-thin aluminum sheets, a conical tip angle of 30°, a
spherical surface ratio of 25% and a backward inclination angle of
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Nomenclature

v surface tension [N/m]

Ym surface tension of iron at Ty, [1.943 N/m]

I's the surface excess at saturation [1.3E—5 mol/m?]

¢ work function [4.3 V]

TMx Marangoni force x-component [Pa]

™y Marangoni force y-component [Pa]

AH, enthalpy of segregation [—1.88E5 J/mol]

Ay temperature coefficient of surface tension for iron
[4.3E—4 N/m K]

a; the activity of sulfur [0.02 wt%]
F total heat flux [W/m?]

F; radiation flux [W/m?]

J current density [A/m?]

K adsorption coefficient

k1 the entropy factor [0.00318 wt% ']

R gas constant [8.3144 J/mol K]

T temperature [K]

Tm melting temperature of iron [1800 K]
Va anode fall voltage [2 V]

Vin equivalent volt drop at the anode [1 V]

15° were the most effective welding parameters. The effect of
electrode tip angle on arc pressure is studied in Ref. [4]. The pres-
sure found to increase with decrease in tip angle had a peak at 45°.
The pressure then decreased with decrease in tip angle. Ushio and
Matsuda [5] developed a mathematical model to investigate the
welding arc by considering different electrode shapes and turbu-
lent arc flow. The k—e turbulent model was used in the analysis. The
calculated velocity was observed the maximum with sharp elec-
trode tip.

Goodarzi et al. [6] developed a two-dimensional model to study
the effect of electrode tip angle on arc by applying the variable
cathode surface area surrounded by the arc plasma. The arc was
assumed in steady state and the flow was laminar. It was found that
increasing the tip angle reduced the span of the arc diameter and
increased the current density distribution on the anode surface and
hence the heat flux to the anode. The axial velocity in the arc col-
umn and gas shear stress on the anode surface was observed to
decrease with increase in tip angle. Tanaka et al. [7] experimentally
investigated the arc properties such as the current density, arc
voltage, heat flux and temperatures for 30°, 45° and 60° tip angles.
It was observed that the arc voltage increased as the arc length
increased from 2.5 mm to 10 mm. For all the three arc lengths
(2.5 mm, 5 mm and 10 mm), the arc temperatures near the cathode
tip were found the same in the range of 22,000 K for a 100 A
welding current. The change in electrode tip geometry was
observed to have insignificant effect on the current density

distribution on the anode surface. Another study in Ref. [8] inves-
tigated the arc pressure experimentally with 30°, 60° and 90° tip
angles and found that the magnitude of the arc pressure is linearly
increased with increase in welding current. For a 300 A welding
current and 8 mm arc length, the arc pressure was found the
maximum with 30° and the minimum with 90° tip angle. Fan and
Shi [9] numerically investigated the arc pressure in gas tungsten arc
welding. The arc pressure was observed to decrease with increase
in tip angle. Mathematical model was developed by Goodarzi et al.
[10] to investigate the weld pool with different tip angles. Heat flux,
current density and gas shear were calculated from the steady state
arc and used as an input to determine the weld pool shape. The
author also included the buoyancy and Marangoni effect in the
analysis. The fluid flow within the molten weld pool was assumed
to be turbulent. The weld pool shapes were determined for a
number of electrode tip angles. The results showed that increasing
the tip angle increased the depth and decreased the width of the
weld pool. The weld pool was observed shallow and wide with
sharp and deep and narrow with flat tip.

All the work cited above present two-dimensional axisymmetric
models in which the torch is normal to the workpiece. However, the
torch is not always normal to the workpiece and can be set to any
optimum angle less than 90° to get good quality weld. In this
present study, a three dimensional model is presented to investi-
gate the arc and weld pool properties in GTAW with four different
tip angles (30°, 60°, 90° and 120°) and two arc lengths (2 mm and
5 mm) with 70° torch angle suggested in Ref. [11]. The study covers
the arc properties such as temperature, velocity, pressure, heat flux
and gas shear and the weld pool properties such as the electro-
magnetic, buoyancy and Marangoni forces in the weld pool. The
weld pool shape and convection are also analyzed. The model is
validated with the experiments and the results are observed in
good agreement.

2. Simulation procedure

The GTAW process is simulated using commercial package
ANSYS CFX® which uses the Navier—Stokes and Maxwell equations
in their conservation form and solves the equations using finite
volume method. The governing equations are given in Ref. [12] and
will not be presented in this paper. The arc is solved in steady state
and the weld pool is calculated in 2 s. Following assumptions are
made for the arc;

e The arc is stationary and is in steady state.

e The flow is turbulent.

e The arc is in local thermodynamic equilibrium (LTE).

e The computational domain is in planar symmetry.

e The variable length of the electrode tip surrounded by the
plasma is the same for normal (90°) and 70° torch positions.

(a) || (B)
c fag "
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|
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Fig. 1. Computational domain (a) arc; small figure shows the electrode tips (b) weld pool.
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Fig. 2. Temperature profiles in 5 mm arc for tip angles (a) 30°, (b) 120°.

Following assumptions are made for the weld pool;

e The fluid flow is laminar.

e The density variation in the weld pool is very small, Boussinesq
approximation is therefore used.

e Heat flux, current density and gas shear for the weld pool are
determined in the steady state arc.

2.1. Simulation of the arc
The computational domain for the arc and weld pool calculation

is shown in Fig. 1. Due to the 70° torch angle, the geometry becomes
planar symmetric. The welding current is 130 A and the power
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Fig. 3. Maximum arc temperature at the electrode tip and anode surface with different
tip angles and 2 mm and 5 mm arc lengths.

supply is straight polarity DC. The electrode is thoriated tungsten of
diameter 3.2 mm. Argon with flow rate of 14 L/min is used as a
shielding gas which ionizes at a temperature greater than 7000 K.
The plasma is not modeled explicitly rather a simplified approach
of increased electrical conductivity is used in the material model to
simulation the ionization of argon and formation of the arc plasma.
The temperature dependent argon properties are taken from
Ref. [13]. A heat source is applied to raise the temperature of the
shielding gas up to 12,000 K and once the arc is initiated the heat
source is removed. The k—e model suggested in Ref. [14] is used in
the analysis.

The sheath region on the anode (workpiece) surface is also not
modeled explicitly and a simplified approach of reference [15] is
used to apply the additional heat flux due to electronic contribution
on the interface of the arc and weld pool domain (surface i in
Fig. 1a). It is found that more than 80% heat is transferred to the
workpiece due to the electronic contribution [16]. The remaining
heat transfer takes place due to conduction, convection and radi-
ation. Heat transfer due to electronic contribution is determined by
three mechanisms, i.e., anode fall, electron potential energy and
electron thermal energy given in equation (1) [17].

F:](¢+Va+vth)+Fr (1)

The values of ¢, V; and Vi, are taken from Ref. [18]. The contri-
bution of radiation flux F; in the total heat transfer from the arc to
the workpiece is only 1.2% [16] and is therefore ignored in this
study.

2.2. Simulation of the weld pool

The variation in density of the liquid SS304 is assumed to be
small, therefore Boussinesq approximation is used. To simulate the
solid and liquid phases of the weld pool, large viscosity of 1E5 cp is
defined where the temperature is less than the solidus and actual
viscosity is defined where the temperature is above the liquidus
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Fig. 4. Temperature distribution on the anode surface in 5 mm arc for tip angles (a) 30°, (b) 120°.
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Fig. 5. Maximum arc temperature at the electrode tip and anode surface with different
tip angles and 2 mm and 5 mm arc lengths.

temperature of the steel. This method is adapted from Ref. [19]. The
workpiece material is SS304, 10 mm in thickness and 50 mm in
diameter. Temperature dependent material properties of steel are
taken from Ref. [20]. The weld pool is determined by applying the
heat flux, current density and gas shear taken from the steady state
results of the arc. These results along with the buoyancy and
Marangoni forces are used to analyze the weld pool for 2 s. This
approach is adopted from Ref. [10].

2.3. Domains and boundary conditions

Boundary details for both the arc and weld pool domains are
shown in Fig. 1a and b respectively. In all the cases, a non-uniform

hexahedral grid is employed. The grid size is 0.1 x 0.1 mm near and
changes to 0.5 x 0.5 mm away from the arc center. The total
number of elements in the arc and weld pool domains are 561,660
and 224,790 respectively.

Temperature of the tungsten electrode cannot exceed the
melting temperature; it is therefore set to 3000 K. Temperature at a,
b, c and j boundaries is 303 K. The arc pressure is 1 atm. A current of
130 A is applied on boundary e which represents the cross-section
of the tungsten electrode. The argon flow is set to 14 L/min at
boundary a which represents the nozzle outlet. Magnetic induction
is zero at boundary c. Boundaries g and h are the fluid and solid
interfaces between the electrode tip and the arc domain. To
simulate the effect of the electrode tip geometry, variable electrode
tip lengths experimentally determined by Haidar and Farmer [2]
are used. The part of the electrode tip surrounded by the arc
plasma (surface h in Fig. 1a) is made conductor and the part which
is not surrounded by the arc plasma (surface g in Fig. 1a) is made
insulator to the current flux. Boundary i is the fluid—solid interface
between the arc and workpiece regions. The flow through the in-
terfaces is conservative which insures the continuity of heat and
current fluxes from one domain to another. Boundaries d, fand k are
planar symmetry.

The weld pool is solved separately. A heat transfer coefficient of
20 W/m? K is set to boundaries j, | and m of Fig. 1b. Heat flux,
current density, gas shear and Marangoni force are applied on
surface i to calculate the weld pool. The first three boundary con-
ditions are taken from the steady state results of the arc, the last
boundary condition is determined according to equation (2) taken

from Ref. [21].
_oyoT _oyoT
TMx = 3T ox’ My = aT oy (2)

The surface tension of binary mixture of steel is determined
according to equation (3), proposed by Sahoo et al. [22];
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Fig. 6. Velocity distribution on the anode surface in 5 mm arc for tip angles (a) 30°, (b) 120°.
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Fig. 7. Maximum current density (a) at the electrode tip, (b) on the anode surface.
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Fig. 8. Current density distribution on the anode surface in 5 mm arc for tip angle (a) 30°, (b) 120°.
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Fig. 9. Heat flux to the workpiece with different tip angles and arc lengths (a) 2 mm,
(b) 5 mm.

3. Results discussion
3.1. Arc temperature

Fig. 2 shows typical arc temperatures for the two extreme tip
angles (30° and 120°) with 5 mm arc length. The maximum arc
temperature at the electrode tip (Tarc) and anode (workpiece) sur-
face (Tanode) for 2 mm and 5 mm arc lengths are shown in Fig. 3. It is
found that the arc temperature near the electrode tip is the
maximum (19,148 K) for sharp tip and decreases to 17,011 K as the
electrode tip angle increases. It is because sharper electrodes have
hotter tips due to the reduced cross-section as compared to the
blunt tips. Temperatures are larger in 5 mm as compared to 2 mm
arc because the electrical resistance is large in the large arc column
which consumes more voltage and consequently the arc tempera-
ture increases.

Fig. 4 shows the contours of temperature distribution on the
anode surface for 30° and 120° tip angles respectively in 5 mm arc
length. The distribution becomes slightly constricted (from
16.5 mm to 16 mm for 7000 K temperature contour) as the elec-
trode tip changes from 30° to 120°. Almost the same decrease in
temperature distribution on the anode surface is observed in 2 mm
arc length. It is found that the electrode tip angle does not produce
any prominent effect on the arc temperature just above the surface
of the workpiece. This is shown by Tapode in Fig. 3. Increasing the arc
length from 2 mm to 5 mm decreases temperature about 7% on the
workpiece surface.

3.2. Arc velocity

Maximum arc velocities for different tip angles and arc lengths
are shown in Fig. 5. It is found that the maximum arc velocity de-
creases as the tip angle increases from 30° to 120°. Arc velocity is
observed to decrease from 262 m/s to 81 m/s in 5 mm arc and from
228 m/s to 44 m/s in 2 mm arc length. Fig. 6a and b represents the
contours of velocity distribution on the anode surface for 30° and
120° tip angles respectively. The minimum velocity contour of
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Fig. 10. Heat flux distribution on the workpiece surface in 5 mm arc for tip angles (a) 30°, (b) 120°.
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Fig. 11. Maximum gas shear on the workpiece surface with different tip angles.
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Fig. 12. Maximum electromagnetic force with different tip angles.

7.6 m/s is wider with 30° as compared to 120° tip angle in both
5 mm and 2 mm arc lengths. This phenomenon tends to produce
the gas shear on the anode surface which consequently develops
wide weld pool with sharp and constricted weld pool with large tip
angle.

3.3. Current density

The maximum current density at the electrode tip and on the
anode surface for different tip angles is shown in Fig. 7a and b

E
E
£
3
S .
. Weld
= direction
5
£
£ -41 —
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6] |+ 7.10E3 (N/m") - 506E3 (N/m’) - 3.03E3 (N/m")
l | = 1.00E3 (N/n")
-8, — : : .
-10 5 0 5 10

Length [mm]

respectively. Current density near the electrode tip is observed
sensitive to the tip geometry and decreasing from 9.0E7 A/m? to
41E7 A/m? in 5 mm and from 8.2E7 A/m? to 41E7 A/m? in 2 mm
arc length with change in tip angle from 30° to 120°. This decrease
is due to the lower electrical potential in the arc with large tip
angle. Increasing the arc length decreases the current flux to the
workpiece about 57% which results in reduced weld pool size. The
electrode tip angle does not produce any dominant change in the
current density distribution on the anode surface as shown in
Fig. 8.

3.4. Heat flux

Heat flux to the workpiece determines the weld pool. In this
study, two sources of heat flux are considered; one is the heat flux
due to conduction and convection and the second is due to the
electron contribution. It is obvious that the contribution of elec-
tronic heat flux is large as compared to the convective heat flux.
Total heat flux is the summation of the two sources. As shown in
Fig. 9, heat flux due to conduction and convection is more sensitive
to the electrode tip angle and decreases from 8.6E6 W/m? to
3.4E6 W/m? and from 15.4E6 W/m? to 5.3E6 W/m? with change in
tip angle from 30° to 120° in 5 mm and 2 mm arc lengths respec-
tively. Heat flux due to electronic contribution remains unchanged
with tip angle and remains almost constant. Total heat flux is
therefore affected by the convective heat flux and slightly decreases
with increase in tip angle. This trend is observed in good agreement
with the two dimensional results of Ref. [6]. Heat flux to the
workpiece decreases as the arc length increases from 2 mm to
5 mm. Fig. 10 shows the distribution of total heat flux on the
workpiece surface which is observed wide with sharp and con-
stricted with large tip angle.

3.5. Gas shear stress

Fig. 11 represents the maximum gas shear stress on the anode
(workpiece) surface with different tip angles and 2 mm and 5 mm
arc lengths. The gas shear stress is calculated primarily from the arc
velocity and decreasing with increase in tip angle.

The gas shear decreases from 4.9 Pa to 1.4 Pa in 5 mm and from
7.5 Pato 1.1 Pain 2 mm arc length when the tip angle changes from
30° to 120°. The gas shear is found almost the same in both the arc
lengths when the tip angles are 90° and above. This shows that gas
shear is more sensitive to change with the arc length with sharp
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Fig. 13. Electromagnetic force with 30° tip angle and arc lengths (a) 2 mm, (b) 5 mm.
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electrode tip. When heat input is the same to the workpiece, small
gas shear tends to enlarge the depth and constrict the width of the
weld pool. The weld pool shape is therefore deep and concentrated
with large and shallow and wide with small tip angle. Gas shear
stress is observed to decrease with increase in arc length from
2 mm to 5 mm.

3.6. Electromagnetic force in the weld pool

The electromagnetic force generates downward pool circulation
which increases the weld pool depth; however, this effect is not as
dominant as the gas shear and Marangoni convection [10]. The
electromagnetic force slightly increases from 4.84E3 N/m’® to
5.20E3 N/m’® in 5 mm and from 13.3E3 N/m°® to 15.0E3 N/m° in
2 mm arc length with change in electrode tip from 30° to 120° as
shown in Fig. 12.

The distribution of electromagnetic force for 30° tip angle and
2 mm and 5 mm arc lengths is shown in Fig. 13. It is observed that
the width of the electromagnetic force does not change signifi-
cantly; however, the depth increases from 2.5 mm to 3.2 mm as the
arc length changes from 5 mm to 2 mm. The weld pool is therefore
observed deep in short arc length.

Table 1
Maximum velocity in the weld pool.
Arc length Tip angle
30° 60° 90° 120°
Velocity (mm/s) 2 mm 157.9 123.8 110.7 1134
5 mm 144.8 109.8 70.7 70

3.7. Buoyancy force in the weld pool

Buoyancy force is developed due to the variation in density of
molten metal. Buoyancy force produces pool convection which is
upward (opposite to the electromagnetic force). Fig. 14 depicts the
maximum buoyancy force in the weld pool in all the cases and is
observed to decrease with arc length. This decrease is associated
with small heat input to the workpiece due to large arc length.

The buoyancy force is found to slightly increase from 2.76E3 N/
m° to 2.78E3 N/m® in 5 mm and from 4.3E3 N/m> to 5.3E3 N/m? in
2 mm arc length respectively with increase in tip angle; however
compared to the gas shear and Marangoni convection, this variation
is very small and does not alter the puddle shape. Increasing the arc
length from 2 mm to 5 mm decreases the buoyancy force. The effect
of electrode tip angle on the distribution of buoyancy force for the
two extreme tip angles (30° and 120°) with 5 mm arc length is
shown in Fig. 15. The distribution is found different in all the cases
and depends on the temperature (to produce density variation) in
the weld pool.

3.8. Weld pool convection and shape

The weld pool shape and convection are affected by the elec-
tromagnetic, buoyancy, gas drag and Marangoni forces. Although
the effect of electromagnetic and buoyancy force is small; however,
these still affect the weld pool convection and cannot be ignored in
the analysis. Table 1 summarizes the velocities of all the combined
driving forces for all the cases.

The Marangoni effect increases with increase in tip angle and
the weld pool shape changes from shallow “w” to deep “v”. The
weld pool velocity decreases with increase in tip angle and arc
length. The weld pool is wide and shallow for 30° and is narrow and
deep for 120° tip angle in both 2 mm and 5 mm arc lengths as
shown in Fig. 16.

@ e |10
. b Weld
31 -t (™ . 5 3
T .- », direction = direction
5 £ D
it J =2
3 . 3 .
= 14 .- = 11 |_-
0 T g 0 =
=1 pen =1
£ E
£-2 £-2
g + 2.8E3 (N/m) + 2.3E3 (\/m’) = 1.9E3 (N/m?’) §' + 2.8E3 (N/m’) + 2.3E3 (\/m’) = 1.9E3 (N/m?)
Q 5] « 1.4E3 (N/m®) + 9.5E2 (N/m") - 5.0E2 (N/m’) 34 « 1.4E3 (N/m") + 9.6E2 (N/m’) - 5.1E2 (N/m")
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Fig. 15. Buoyancy force in 5 mm arc length for tip angles (a) 30°, (b) 120°.
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Fig. 16. Weld pool shape and convection for tip angles (a) 30°, (b) 60°, (c) 90°, (d) 120°.

4. Experimental validations

Figs. 18 and 19 show a comparison between the numerical
and experimental weld pool shapes for 2 mm and 5 mm arc
lengths respectively. The calculated weld pool is about 7.4 mm
wide and 1.1 mm deep in 30° and 6 mm wide and 1.5 mm deep
in 120° tip angle in 5 mm arc length. Similarly, the weld pool is
7.3 mm wide and 1.5 mm deep in 30° and 6.1 mm wide and

2.2 mm deep in 120° tip angle in 2 mm arc length. It shows that
changing the arc length from 5 mm to 2 mm does not alter the
pool width significantly. In all the cases, the weld pool is
observed wide ahead of the electrode tip due 70° torch angle.
Although numerically computed weld pools are observed about
15% large (on average); however, the overall results are
observed in good agreement with the experimental results
(Fig. 17).
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Fig. 17. Numerical and experimental pool shapes in 2 mm arc with tip angle (a) 30°, (b) 60°, (c) 90°, (d) 120°.
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Fig. 18. Numerical and experimental pool shapes in 5 mm arc with tip angle (a) 30°, (b) 60°, (c) 90°, (d) 120°.

5. Conclusions

Four different electrode tips are studied to investigate the effect
of tip geometry on arc and weld pool shape. The study also covers
two arc lengths of 2 mm and 5 mm with 70° torch angle. The
objective is to study the arc and weld pool behavior in stationary
GTAW process with tilted torch. Following are the conclusions from
the analysis;

e The maximum arc temperature near the electrode tip de-
creases with increase in tip angle and decrease in arc length.
The distribution of the arc temperature is found wide with
sharp and concentrated with large tip angle.

e The maximum velocity in the arc column decreases with in-
crease in tip angle. Velocity on the anode surface is observed
to decrease with decrease in the arc length from 5 mm to
2 mm.

e The maximum current density at the electrode tip decreases
with increase in tip angle. The distribution of current density
on the anode surface remains almost the same with tip angles;
however, observed to decrease with increase in the arc length.
Heat flux due to conduction and convection is found more
sensitive to the electrode tip geometry and decreases with
increase in tip angle. Heat flux due to electronic contribution
remains almost unchanged; however, total heat flux is slightly
affected by the electrode tip angle. Decreasing the arc length
increases heat flux to the workpiece.

e The gas shear decreases as the electrode tip angle increases and
is observed more sensitive to the arc length with sharp tip
angle.

e The electromagnetic force remains almost the same with tip
angles. Changing the arc length from 5 mm to 2 mm reduces
the electromagnetic force.

e The buoyancy force is observed to increase with increase in
electrode tip angle. Increasing the arc length decreases the
buoyancy force in the weld pool.

e Pool convection decreases with increase in tip angle.

e The computed weld pool shapes are observed wide and
shallow with small and narrow and deep with large electrode
tip angle. The computed pool shapes are compared with the
experimental results and are observed in good agreement.
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