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Abstract
This paper addresses the design of the unpowered re-entry trajectory of a fully reusable, winged, unmanned
single-stage-to-orbit (SSTO) vehicle, as the last phase of a payload deployment into low Earth orbit. A
hybrid optimisation technique that couples a population-based, stochastic algorithm with a deterministic,
gradient-based technique is used to minimize the heat load along the re-entry trajectory after accounting for
operational constraints on the heat flux and normal acceleration. Uncertainties in the atmospheric model
are considered to evaluate their effects on the vehicle performance. Firstly, the deterministic optimal
control law is re-integrated after introducing uncertainties into the model. The proximity of the final
solutions to the target states are analysed statistically. A second analysis is then performed, aimed at
determining the best performance of the vehicle when these uncertainties are included directly in the
optimisation. The statistical analysis of the results so obtained are summarized by an expectancy curve
which represents the probable vehicle performance as a function of the uncertain system parameters. This
analysis can be used during the preliminary phase of design to yield valuable insights into the robustness
of the performance of the vehicle to uncertainties in the specification of its parameters.

1. Introduction

Although launch vehicles are indispensable in space exploration and transportation, the current expendable launch
systems represent an expensive way to get access to space. To reduce its cost, the technology to design new space-
to-access vehicles is currently an active field of research. By emphasizing on full re-usability in their design and
employing an airline-like approach, where the costs of development are amortized over repeated flights, these vehicles
promise to dramatically reduce the cost per kilogram of access to space. In the process of designing the next generation
of reusable launchers, it is fundamental that safety and reliability in trajectory planning are obtained. During re-entry,
the intense heating environment to which the vehicle is exposed is one of the most challenging problems to overcome.
In fact, the control has to steer the re-entry corridor on feasible trajectories constrained by deceleration and heating.
The overarching aim of the research described in this paper is to develop a model-based software tool that will aid in the
preliminary design of the next generation of space-access vehicles. A winged re-usable single-stage-to-orbit (SSTO)
vehicle is designed to perform a full mission, based on an ascent trajectory, low orbit for payload delivering, and re-
entry phase. Within this paper the unpowered re-entry trajectory of a SSTO is designed by optimising a control law that
alters the angle of attack and the bank angle of the vehicle along its trajectory to the TAEM point [1]. In the process
of preliminary design, it is fundamental that any new tools and approaches that are developed for the evaluation of
vehicle performance are also capable of functioning reliably in an integrated design environment. As such, the optimal
trajectories that result from application of these tools need to be robust, as they have to consider of the effect of uncer-
tainties within the various parameters and models that comprise the overall vehicle system design. During the process
whereby the control law is optimized in order to minimize the total heat load at the TAEM interface, it is thus also
highly desirable to be able to assess the sensitivity of the design to variations, for instance, on atmospheric data which
influence the heating model prediction and aerodynamics. In addition to finding a representative control law for the
re-entry trajectory of a spaceplane, the uncertainties in the atmospheric model which characterize the tool are included
in order to estimate their impact on the overall vehicle performance. Two analyses are performed. In the first analysis,
a set of trajectories which use the nominal optimal control law is integrated implementing the uncertainty within the
atmospheric model. With the second analysis the control law is re-optimised and the uncertainties are included within
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the optimization loop to determine their effect on the vehicle performance. A statistical analysis is conducted on the re-
sults in order to produce an expectancy curve which relates the probability of the vehicle having a certain performance
to the expected variation due to uncertainty in the system design parameters. The optimization process proposed here
is based on a hybrid stochastic-deterministic algorithm which combines a global explorative search and a local search.
This approach is revealed to overcome successfully the limitations of gradient-based solvers, as they are affected by
the presence of discontinuities in any system models and this makes it difficult to find an optimal solution if a good
initial guess is not properly chosen. The paper starts by describing the optimization tool that was developed to solve the
re-entry optimal control problem for a representative reusable SSTO and the uncertainty methodology. The succeeding
section describes the various model subsystems used to evaluate the spaceplane performance. The specific trajectory
optimization problem is then addressed, followed by a discussion of the results.

2. Optimization and robustness analysis

2.1 Trajectory optimization

All practical methods for solving an optimal control problem involve an approach in which the system is converted into
a finite dimensional approximation. This methodology is known as the transcription method. The dynamic system,
characterized by continuous functions, is converted into a problem of a finite set of variables: the resulting dimensional
problem is then solved using a parameter optimization method. A further step aims to assess the accuracy of the finite
dimensional approximation. This methodology allows one to re-write the optimal control problem into a non-linear
programming problem (NLP). There are several methods that can be used to transcribe the optimal control problem
into a NLP [2]. The single shooting method is the simplest technique to solve the NLP, where only the system
controls are discretized and the whole optimization process iterates over the integration of dynamic system from initial
to final conditions. The advantage of using a single shooting method is that the transcribed problem involves a small
number of design variables; the disadvantage is that a small change in the initial condition compromises the boundary
condition accuracy. A more sophisticated approach is the direct collocation method where both the controls and the
state variables defining the system are discretized in terms of the elapsed time. In this way, an infinite-dimensional
ODE system is replaced by a finite number of equality constraints, and the integrals associated with the objective and
constraint functions of the original problem are approximated. This approach gives a large but sparse NLP, which can
be solved conveniently using any one of a number of sequential quadratic programming (SQP) solvers [3] . The hybrid
optimization technique adopted here is based on a mixed formulation which combines a population-based stochastic
algorithm with a deterministic gradient-based method. Population-based stochastic algorithms are able to explore the
global search space efficiently, and are able to find a feasible solution when the constraints are sufficiently loose and
the number of the design variables is not too high (generally less than 100 variables). Deterministic gradient based
solvers can deal efficiently with equality constraints and the high dimensionality of the typical problem. The hybrid
method aims first to explore the control search space by using a stochastic approach coupled to a single shooting
transcription method to evaluate the performance of candidate solutions, relaxing the system constraints and tolerances
on the final states of the system. The second step involves a local optimization which aims to improve the value of the
objective function and to ensure that strict equality constraints for the system are satisfied. A general overview of the
optimization method that was used in this work is summarized in Fig. 1 and is described in detail below.

1. Transcribe the optimal control problem into a single shooting NLP The optimal control problem is converted to
a non linear programming problem with a finite set of variables by using a single shooting method.

2. Solve the single shooting NLP using MOPED The single shooting NLP is then solved using an hybrid Evolution-
ary Algorithm (EA) which is obtained by coupling a Multi-Objective Parzen-based Estimation of Distribution
[4] (MOPED) and a modified version of the Inflationary Differential Evolution Algorithm (IDEA) [5], [6]. The
MOPED algorithm belongs to a subset of Evolutionary Algorithms called Estimation of Distribution Algorithms
(EDA) [7]. These algorithms build a probabilistic model of the search space, and the evolutionary search op-
erators, such as crossover and mutation, are replaced by a sampling procedure that operates on the probabilistic
representation: the Parzen method [8] which builds a probabilistic representation of Pareto optimal solutions,
with multivariate dependencies among variables [4]. The Parzen method uses a non-parametric approach to
kernel density estimation which gives rise to an estimator that converges everywhere to the true Probability Den-
sity Function (PDF) in the mean square sense. Starting from the current population, the individuals are sampled
from a uniform probability density function (PFDs) and then ranked by using NSGA-II techniques [9]: non-
dominated sorting and crowding operators are used to classify promising solutions in the objective space. On the
basis of information given by the individuals, the Parzen method allocates identical probability density function,
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Figure 1: General scheme for the trajectory optimisation process.

each one centered on a different element of the sample. A probabilistic model of the promising search space
is built on the statistical data provided by the individuals, and new individuals are sampled by the probabilistic
model itself. Fitness values are used in order to evaluate the kernels variance and to favour sampling in the neigh-
bourhood of the most promising solutions. MOPED explores the search space efficiently, but often prevents fine
convergence on the optimal point, in particular when the solutions are spread over different areas of the feasible
space. This feature led to the coupling of MOPED with IDEA, to give better convergence properties.

3. Refine MOPED solution using IDEA The Inflationary Differential Evolution Algorithm (IDEA) is based on a hy-
bridization of a differential evolution (DE) variant [10] and the logic behind monotonic basin hopping (MBH)
[11]. IDEA has been demonstrated to out-perform both DE and MBH on some difficult design problems, for
instance those where the search space has a (multi) funnel-like structure [5] . The final solutions obtained by
MOPED are clustered based on the Euclidean distance between them in the search space, resulting in a variable
number of solutions clusters. For each of them, a threshold distance is chosen such that each cluster has a certain
number of individuals. A DE mechanism is performed a number of times, beginning with the sub-population
of each cluster. Each process is stopped only when the population contracts to below a predefined threshold.
Every time the DE stops, a local search is performed in order to converge properly to the local optimum. Since
the design optimisation in this case is constrained, the internal DE mechanism can be modified such that the
comparison of individuals during the DE process is able to account for the constraints on the system before
optimality in terms of the objective function for the system is assessed.

4. Transcribe the optimal control problem using DFET The optimal control problem is converted to a non linear
problem programming using a direct transcription method based on Finite Elements in Time (DFET) on a spectral
basis [12] .

5. Initialize DFET-based NLP using best solution from IDEA and solve using gradient method. The NLP prob-
lem is then solved by using a gradient-based optimization method, where the starting point is the solution
obtained by the previous stochastic approach.

2.2 Robust design and uncertainties

Within the early stages of design, possible sources of uncertainties which affect the models need to be characterized to
consider their impact on the design and to properly assess the performance of the system. Uncertainties occur across
various phases of modeling and simulation, for instance the mathematical representation of the physical system, and
its inherent variation. Two different types of uncertainties can be identified: (a) aleatory uncertainty arises from the
fact that the system can have a random behaviour, (b) epistemic uncertainty results from a lack of knowledge about
the system. Once the uncertainty levels have been estimated, it is possible to perform several different analyses, for
instance: (i) an evaluation of the sensitivity of the nominal control law in the presence of the estimated uncertainties,
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(ii) a statistical characterization of the vehicle performance in the presence of the uncertainties, (iii) a robust opti-
mization of the trajectory, optimising the performance and minimising the effect of the uncertainties. In this paper an
uncertainty model has been used to perform a robustness analysis of the nominal control law: once the optimal re-entry
trajectory has been evaluated by using the nominal models, the optimal control law is reintegrated by using the per-
turbed outputs of the model subsystems. In the second analysis the uncertainties are implemented directly within the
optimization loop, and the optimal performance of the vehicle is evaluated. Multiple optimizations are performed, each
one adopting a different perturbed profile of the uncertain variable. In order to correctly assess the feasibility of the
re-entry trajectory, a number of model parameters need to be considered as uncertain. Specifically here, the quantities
affected by uncertainty are the atmospheric pressure and temperature, as they influence others parameters within the
atmospheric model, such as the speed of sound and the density through the gas equation of state. By perturbing the
atmospherics data, an uncertainty is generated within the aerodynamic model through its inputs, such as Mach number
and dynamic pressure.

2.3 Uncertainties model

The perturbation of a specific variable is represented by a percent deviation around the nominal value of the uncertain
system parameter; denoting the nominal quantity as xnom, the uncertain value xunc is defined as follows:

xunc = xnom + εS E xnom (1)

where ε is an error bound function which depends on the operational condition. S E denotes a sampling surface
which maps the set of operational conditions into the range [-1, 1], and the resulting interpolation depends on the values
on each node. In order to perform a robustness analysis of the vehicle performance, n sets of values for the parameters
defining S E are randomly generated. For the robustness analysis of the nominal control law, the process generates n
different S E surfaces by randomly choosing the values defining S E from an uniform distribution in the interval [-1; 1],
where n is the total number of integrations performed. For the multiple optimization robustness analysis, the same set
of n S E surfaces are used to generate n optimised trajectories that account for the uncertainty in the system.

3. System models

This section presents the mathematical models used to simulate the vehicle performance during the re-entry, in par-
ticular, a description of aerodynamics, thermal model, atmosphere and dynamic model used to represent the vehicle
behaviour during a descent profile starting at hypersonic regime and altitude of 120 km and ending at 24 km and at
supersonic speed at the TAEM point.

3.1 Dynamic model

The vehicle is considered to be a point mass flying around a spherical and rotating Earth. The motion of the vehicle is
governed by the following set of dynamic equations [13]:

ḣ = vsinγ (2)

v̇ = −
D
m
− g sin γ + ω2

e (Re + h) cos λ(sin γ cos λ − cos γ sin χ sin λ) (3)

γ̇ =
L

mv
cos µ −

(
g
v
−

v
Re + h

)
cos γ + 2ωe cos χ cos λ + ω2

e

(
Re + h

v

)
cos λ (sin χ sin γ sin λ + cos γ cos λ) (4)

(5)

χ̇ =
L

mv cos γ
sin µ −

(
v

Re + h

)
cos γ cos χ tan λ + 2ωe(sin χ cos λ tan γ − sin λ) − ω2

e

(
Re + h
v cos γ

)
cos λ sin γ cos χ (6)

λ̇ =
v cos γ sin χ

Re + h
(7)
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θ̇ =
v cos γcosχ

(Re + h) cos λ
(8)

where h denotes the altitude above mean sea level, v is the magnitude of velocity in a rotating Earth-centered
reference frame, γ indicates the flight path angle, χ is the path directional angle, µ is the bank angle, λ and θ denote
respectively the latitude and the longitude, m = 60000 kg is the mass of the vehicle, L and D indicate aerodynamic lift
and drag forces. Re = 6375 km is the mean Earth radius, ωe = 7.2921 × 10−5rad/s is the rotational velocity of the
Earth and g0 = 9.80665 m/s2 is the gravity acceleration at sea level. The control law governs the angle of attack and
the bank angle, and these equations allow the vehicle’s out of plane motion to be taken into account.

3.2 Thermal model

For the re-entry design process, the heat flux is assumed to be convective. The maximum heat flux to the vehicle is
assumed to be adequately represented by a simple analytical model:

q̇conv = Ke

(
ρ

Rn

)1/2

v3 (9)

where ke = 5.19111 × 10−5(kg/m2)1/2, ρ is the atmospheric density and Rn is the radius of curvature of the stagnation
area. The variation of the radius of curvature with the angle of attack for the vehicle studied in this paper has been
calculated using the HyFlow software [14] for α ∈ [0, 85] deg, as reported in Fig. 2.
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Figure 2: Radius of curvature as a function of angle of attack.

3.3 Earth model

The gravitational field is assumed to be a function of altitude and varies according to an inverse square law g(h) =

g0(h/(Re + h))2. The atmospheric characteristics (temperature, pressure, density and speed of sound) follow the US
Standard Atmosphere 1976 model up to 1000 km.

3.4 Aerodynamic model

The aerodynamic forces acting on the vehicle are function of the angle of attack α and flight Mach number M and
are evaluated using a simple analytical model. In the hypersonic regime, the non linear lift variation with the angle of
attack is represented by Newtonian theory [15] as

CL,hs = 2
Awing

Are f
sin2 α cosα (10)

where Awing is the area of the lifting surfaces of the vehicle. As the flight Mach number decreases towards the
supersonic regime, the lift on the vehicle is more accurately modelled through linearized aerodynamic theory so that

CL,ss =
CLα
√

M2 − 1

Awing

Are f
sinα cosα (11)

and CLα denotes a constant depending on the vehicle geometry. The overall variation of lift coefficient with Mach
number is then modelled using the following equation:
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CL =
CL,ss + CL,hs

2
+

√
C2

L,ss + C2
L,hs (12)

The drag coefficient of the vehicle is evaluated as

CD = CD0(M) + CL tanα (13)

where the first term CD0, a function of the Mach number, accounts for the wave, base, and viscous drag of the vehicle
and the second term is the induced drag of its lifting surfaces. The overall lift and drag forces on the vehicle are then
obtained by multiplying by the dynamic pressure 1/2 ρv2 and the vehicle reference area Are f . Figure 3 shows the lift
and drag coefficients as a function of Mach number and angle of attack.
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(a) Lift coefficient CL versus Mach number and angle of attack
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(b) Drag coefficient CD versus Mach number and angle of attack

Figure 3: Aerodynamics outputs for the SSTO vehicle.

4. Test case

For the re-entry trajectory problem, the control vector is given by c = [α, µ, t], where t is the duration of the trajectory
until the vehicle reaches the TAEM point. The search space D for the controls is defined by the following bounds:
α ∈ [−10, 75] deg, β ∈ [−80, 80] deg, and the flight time cannot exceed 3000 s. The bounds on the state vector are:
h ∈ [10, 180] km, v ∈ [0.4, 9] km/s, γ ∈ [−90, 90] deg, χ ∈ [−180, 180] deg, λ ∈ [−180, 180] deg, θ ∈ [−180, 180] deg.
The control law is the solution of the optimal control problem which aims to minimize the overall heat load acting on
the vehicle:

min
c∈D

(
q(t = t f )

)
(14)

subject to the dynamics given by Eq. (2 - 8) . The initial point of the trajectory is defined as follows:

h(t = 0) = h0 = 120 km
v(t = 0) = v0 = 7.8 km/s
γ(t = 0) = γ0 = −1 deg
χ(t = 0) = χ0 = 90 deg
λ(t = 0) = λ0 = 1 deg
θ(t = 0) = θ0 = 0 deg

(15)

The terminal conditions required at the TAEM phase are:

h(t = t f ) = h f = 24 km
v(t = t f ) = v f = 0.8 km/s
γ(t = t f ) = γ f = −10 deg
χ(t = t f ) = χ f = 90 deg
λ(t = t f ) = λ f = 40 deg
θ(t = t f ) = θ f = 0 deg

(16)

Additional trajectory constraints are imposed on the heat flux so that q̇ < 20000 W/m2 and maximum normal
acceleration az < 28 m/s2.
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4.1 Shooting based evolutionary optimization

The evolutionary optimization scheme implements the shooting method to discretize the control law: the resulting
control vector c is composed of a set of discrete control law values which are interpolated using a piecewise cubic
interpolation and directly integrated in time. Within the control vector c, the angle of attack and bank angle are
discretized into 17 elements each, c(1 : 17) ∈ [−10, 75] deg, c(18 : 34) ∈ [−10, 50] deg. The last design variable
defines the duration of the trajectory, c(35 : 36) ∈ [80, 3000] s. The equality constraints on final states are converted
into inequality constraints such that h f ∈ [23, 25] km, v f ∈ [0.7, 0.9] km/s, γ f ∈ [−12,−8] deg, χ f ∈ [89, 92] deg,
θ f ∈ [1, 1] deg and λ f ∈ [39, 41] deg.

4.2 Finite element in time direct collocation

The DFET method implemented in the optimisation process assesses the decomposition of the trajectory into N ele-
ments, each of which has np collocation points. The resulting set of non-linear algebraic equations obtained from the
transcription method becomes the general non-linear programming problem (NLP) with the objective function:

min
αs,δs,ts

(
q(t = t f )

)
(17)

subject to nonlinear algebraic constraints,

C(hs, vs, γs, χs, λs, θs, αs, µs, ts) = 0 (18)

where hs, vs, γs, χs, λs, θs, αs, µs denote NLP vectors containing the set of values of the state, control and time variable
for each node defined by the DFET method. Due to the large number of variables involved, the NLP is solved by using
a gradient-based deterministic algorithm.

4.3 Implementation of uncertainties

Generally the level of uncertainty in the atmospheric model increases with altitude. The US 1976 Standard Atmosphere
used here is well known and identical to the Standard Atmosphere of the International Civil Aviation Organization up to
32 km; above this altitude, the US model becomes less accurate when compared to experimental data. Possible sources
of uncertainty are the stochastic nature of the solar radiation absorbed and re-emitted by the Earth, which changes
depending on geographical location. Further uncertainty can arise when creating a global atmospheric model, i.e. from
the basic assumptions as to the average composition of air. For the atmospheric model, the uncertainty distribution
function is defined as follows:

εatm(h) = lb,h

(
1 −

h
hc

)
+ ub,h

(
h
hc

)
(19)

where lb,h, ub,h indicate respectively the lower and the upper limits defined as percentage around the nominal
value and increasing linearly the altitude, h ∈ [h, hc], and hc = 150 km is a cut-off value, set equal to the maximum
value of the altitude vector. The percentage boundaries for the atmospheric pressure are estimated as ub,P = 1 %,
ul,P = 30 %, while the temperature boundaries are estimated asub,T = 10 %, ul,T = 30 %. Fig. 4 shows an example of
the approach applied to the temperature and compares the nominal profile with the perturbed temperature profile.
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Figure 4: Nominal and perturbed values for the atmospheric temperature as a function of altitude.
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5. Simulation results

Following the algorithm described in the previous section, a baseline trajectory is optimized using the nominal outputs
from the system model. Figure 5 shows the optimized angle of attack α (see Fig.5a) and the bank angle µ (see Fig. 5b)
as a function of time.
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(b) Bank angle

Figure 5: Nominal control laws for the re-entry trajectory.

The vehicle performs an initial atmosphere penetration phase at constant angle of attack of 75 deg: as the altitude
decreases (see Fig. 6a) the heat flux increases (see Fig. 10b), reaching a local peak for a slightly decreased value of
the angle of attack (Fig.5a) at about 263 s. A manoeuvre to increase the angle of attack follows to mantain the heat flux
within the limit of 20000 W/m2. The control law alters the bank angle of the vehicle to fulfil the final TAEM condition
and to minimize the heat load on the vehicle. In order to analyze the sensitivity of the baseline control law to the model
uncertainties, a set of 100 randomized atmospheric profiles were then implemented to perform 100 integrations of the
control law shown in Fig. 5. The evolution of the state vector with time is shown in Fig. 6. As can be clearly seen
none of the perturbed trajectories meets the target conditions (h=24 km, v=0.8 km/s, γ=-10 deg, χ=90 deg, θ=0 deg,
λ=40 deg). Figure 7 and Table 1 report the statistics on the deviation of the perturbed trajectories from the target
conditions. The full set of integrations converges towards the desired target conditions following a quasi-Gaussian
distribution; Table 1 reports the mean value and standard deviation of final states: as can be seen, the mean values
of the final state are lower than the target state. This first approach is helpful for a preliminary understanding of the
robustness of the optimized control law.

Table 1: Statistics on the values of the design parameters

Mean Standard deviation Target values
State

Altitude, h (km) 23.803 0.6231 24
Velocity, v (km/s) 0.7634 0.0423 0.8

Flight path angle, γ (deg) -9.9953 3.3489 -10
Directional path angle, χ (deg) 89.5942 1.791 90

Longitude, θ (deg) -0.0015 0.0070 0
Latitude, λ (deg) 39.7746 0.2195 40

Since the perturbed trajectories do not fully satisfy the various path and final constraints, a more correct approach
to evaluate the vehicle performance is to run 100 separate optimizations, each considering a different set of randomly
perturbed system parameters. The resultant control laws are shown in Fig. 8. The control laws have the same pattern
or shape as the nominal one, and are able to exactly meet the desired final conditions (see Fig. 9) whilst also fulfilling
all the path constraints. Figure 10 shows the values of the normal acceleration and heat flux for the entire trajectory,
demonstrating that the two constraints have been met.

The heat load computed from the set of 100 trajectories obtained using the optimized control laws can be sta-
tistically analysed. The mean value of the heat load along the re-entry trajectory is 7.5593 MJ/m2 for the multiple
optimization case, and the standard deviation is 74.323 kJ/m2. Figure 12 shows the cumulative distribution functions
(CDF) for the integration of the discrete PDF given in Fig. 11.
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(e) Longitude
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Figure 6: Evolution of the states, where the bold red lines refer to the nominal trajectory, and the blue lines refer to the
integrated trajectories with perturbations present.

The information summarized in Fig. 12 can give an immediate understanding of the effect of uncertainties on the
performance of the vehicle during the preliminary design phase, here shown in terms of the total heat load at the TAEM
point. The upper right end of the curve corresponds to the worst case scenario, when the effect of the uncertainty has
the largest negative impact, resulting a very high total heat load. On the other hand, the lower left end of the curve
corresponds to the best case scenario, in other words the total heat load obtained when the effect of the uncertainty
is the most favorable. The CDF curve gives the expectancy of obtaining a particular value of total heat load between
the best and worst case values. If the uncertainties are correctly estimated, it can be guaranteed that in all cases the
vehicle can arrive at the TAEM point with a total heat load which is equal to the worst case scenario (7.741 MJ/m2),
while there is a probability p ≤ 0.01 that the vehicle will arrive to the final point with an amount of heat load equal
to the value obtained in the best case scenario (7.422 MJ/m2 in this case). It is therefore possible to have a direct
quantification of the probability of a given final heat load value between the best case and the worst case values, e.g.,
a total heat load of 7.6108 MJ/m2 can be obtained with p = 0.8, while a value of 7.501 MJ/m2 can be obtained only
with p = 0.2. It should be noted that while a sample size of only 100 is generally not considered large enough to
draw accurate conclusions from the statistics, the sample size is large enough to test the validity and usefulness of this
approach and to assess the potential for future work.
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Figure 7: PDF of the final states when the nominal control laws are integrated using a perturbed atmospheric model.
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Figure 8: Optimized control laws where the bold red lines refer to the nominal trajectory, and the blue lines refer to the
integrated trajectory with perturbations present.
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Figure 9: Evolution of the states for optimal control law where the bold red lines refer to the nominal trajectory, and
the blue lines refer to optimised trajectories with perturbations present.
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Figure 10: Time evolution of the normal acceleration az and heat flux q, where the bold red lines refer to the nominal
trajectory, and the blue lines refer to optimised trajectories with perturbations present.
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Figure 11: PDF of total heat load as obtained from
the optimized trajectories.
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Figure 12: CDF curve of total heat load for the optimized
trajectory

6. Conclusion

The paper describes a general approach for trans-atmospheric trajectory optimisation. A hybrid stochastic-deterministic
algorithm and its application to the design of re-entry trajectory for an unpowered high performance, unmanned, single-
stage-to-orbit vehicle as the last phase of a payload deployment into low Earth orbit has been detailed. Uncertainties in
the atmospheric model have been considered, highlighting the need for the effect of epistemic and aleatory uncertainties
to be considered from the very beginning of the design phase in order to have a proper estimation of the possible
or probable performance of the vehicle. Integrating the trajectory using a static, nominal optimal control law with
a randomly perturbed atmospheric model allows for a sensitivity analysis of the obtained control law, and allows the
deviation of the results from the target final conditions to be evaluated. A second multiple optimisation approach is then
performed, giving a performance expectancy curve based on the objective function, e.g., the total heat load, which can
be used at the preliminary stage of the vehicle design to correctly estimate the performance of the vehicle accounting
for uncertainties in the simulation models. Future work will aim towards the implementation of tools for the robust
optimisation of trans-atmospheric trajectories, with the aim of optimising the expected values of performance while
minimising the effect of uncertainties. The optimization analysis will be extended from the TAEM phase to account
also for the landing approach of the SSTO vehicle. Future aerodynamic models will thus need to include a description
of subsonic regime and a more realistic assessment of the uncertainties that are present within the aerodynamic model.
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