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Abstract. Growing user expectations of anywhere, anytime access to
information require new types of data representations to be considered.
While semi-structured data is a common exchange format, its verbose
nature makes files of this type too large to be transferred quickly, espe-
cially where only a small part of that data is required by the user. There
is consequently a need to develop new models of data storage to sup-
port the sharing of small segments of semi-structured data since existing
XML compressors require the transfer of the entire compressed structure
as a single unit. This paper examines the potential for bisimilarity-based
partitioning (i.e. the grouping of items with similar structural patterns)
to be combined with dictionary compression methods to produce a data
storage model that remains directly accessible for query processing whilst
facilitating the sharing of individual data segments. Study of the effects
of differing types of bisimilarity upon the storage of data values iden-
tified the use of both forwards and backwards bisimilarity as the most
promising basis for a dictionary-compressed structure. A query strategy
is detailed that takes advantage of the compressed structure to reduce
the number of data segments that must be accessed (and therefore trans-
ferred) to answer a query. A method to remove redundancy within the
data dictionaries is also described and shown to have a positive effect on
memory usage.

1 Introduction

New directions in the provision of end-user computing experiences make it neces-
sary to determine the best way to share online data. The volume of data available
over the Internet grows on a daily basis. At the same time, end users’ expec-
tations are increasing, with smartphone users now expecting instant access to
information wherever they may be. The array of different processing techniques
in use necessitates a standard format for data exchange and the self-describing
nature of semi-structured data, in particular XML, has led to its common usage
for this purpose. The side effect of this property is that file sizes quickly be-
come large, with a high proportion of this being contributed by the description
of the file format. XML compression techniques have partly addressed this by
reducing storage requirements at the significant expense of requiring additional
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processing to access the data contained within the compressed files. However, an
entire data structure is often not required, with users typically only interested
in a small subset of the data. In such cases it follows that only the parts of the
data structure of interest to the user need be accessed by the query processing
system. Where the data is appropriately partitioned, or broken into segments,
such an approach can limit the volume of data to be processed. A similar effect
can be seen with data transfer. By only transporting the data segments directly
involved in answering a query, the overall communications bandwidth utilised is
also reduced. The effect is multiplied where additional queries can be answered
using the data segments already held. In a system allowing sharing between
peers, the data can be sourced from another local device rather than the server -
again there is benefit in only sharing the segments required to resolve the query.
Existing XML physical models are either non-queryable ([1], [2], [3], [4]) or have
other drawbacks, e.g. requiring large sections of data to be decompressed in or-
der to access a single value ([5], [6], [7], [8], [9], [10], [11]). In all cases these
existing storage models require the entire data structure to be transferred as a
single unit to allow any access to the data contained within. To facilitate shar-
ing, a data storage model should be able to partition the semi-structured data
into segments and store these in a manner that maximises utilisation of stor-
age space while still making the stored values easily accessible. Semi-structured
data can be separated into segments of related data by a process based around
bisimilarity [12][13] - where items with similar structural patterns are grouped
together. Such segmentation forms the basis of a data storage model that al-
lows individual segments to be shared and recombined as required. Support for
queries can be maintained by utilising an independent method of compression
for each data segment - i.e. the whole structure should not be required to access
the data stored in any one of the segments. The contribution of this paper is to
characterise the effect of alternative approaches to bisimilarity on partitioning
XML data structures with a view to identifying the most promising approach.
Partitioning in this way produces redundant dictionaries and we examine the po-
tential for curbing this problem. Lastly we demonstrate improvements in query
performance using partitioned, compressed data structures. Section 2 reviews
the previous work in the areas of semi-structured data compression, indexing
and structural summarisation. The experimental work is set out in Section 4
and the results are presented and discussed in Section 5.

2 Background

XML documents are fundamentally tree-based structures although it is possible
to superimpose links across the tree. This makes it convenient to use a datagraph
as a convenient abstract representation of a document. The datagraph provides
a graphical representation of the document structure showing each individual
XML element as a node within a graph and the structure of the document as
edges connecting the nodes. This presents a starting point for approaches to par-
titioning and indexing XML structures. Work-load aware methods of partitioning
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Table 1. Comparison of existing XML compressors
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Comment
XMill[1] No No gzip Full N/A User must specify groupings and compressors to

achieve claimed level of compression.
XMLPPM[2] No No PPM Full N/A Statistical modelling allows better compression than

default XMill, but maintaining four models is slow.
SCA[3] No Req. gzip Full N/A Slower and less effective than XMill. Requires

XML schema.
XWRT[4] No No gzip Full N/A Can improve compression, but must fully adjust

parameters.
XGrind[5] Yes Opt. Huffman Value No Compression requires two passes over document.

Querying requires parsing of entire compressed
document. Only exact matches can be found.

XPRESS[6] Yes No Huffman/ Value No Improves querying over XGrind - no need for
dictionary linear parse of document. Compression still

considerably worse than XMill.
QXT[7] Yes No gzip Container No Compressed size is design priority. Must

unzip full container before any examination
of transformed contents.

XQueC[8] Yes No ALM/ Value Poss. Prefers advance knowledge of query workload
Huffman to choose compressors. Requires large auxiliary

data structures to permit querying - must manage
pointers to individual items within containers.

XQzip[9] Yes No gzip/ Block No Values held in blocks of 1000. Requires
dictionary decompression of full block to access

single value. Authors recognise this and
attempt to compensate with buffer pool.

XCQ[10] Yes Req. gzip Block Part. Stores less structure so smaller compressed
files, but requires schema to do so.

ISX[11] Yes Opt. gzip Block No Emphasis on traversal of structural part.

XML data provide benefits in distributed processing of native XML structures
[14]. Other partitioning techniques seek to improve query performance by map-
ping XML into object hierarchies [15]. Path-base partitioning [16] and variations
that are tuned to particular query patterns [17] have also been shown to provide
significant benefits. Work on DataGuides [18] recognised the repetitive nature
of datagraphs and exploited it to aid querying of schema-less semi-structured
databases. By extracting only unique paths of nodes that exist within the data-
graph, the DataGuide produced is a compact and accurate summarisation of
the database structure offering useful information for query authors. Bisimilar-
ity [12][13] exploits patterns in the types of nodes in the datagraph that are
connected to each other. Establishing bisimilarity is a two stage process. First,
the two nodes must be labelled the same, i.e. the two elements represented by
the nodes must be of the same type. Secondly, the paths connected to the two
nodes are examined to ensure that the labels of the ancestor nodes (via the
incoming paths) are the same for each node and that the labels of the descen-
dant nodes (via the outgoing paths) are the same for each node. A variety of
approaches to bisimilarity are possible by varying the direction and length of
the paths examined. The A(k)-index [12] is a family of indices created using
different levels of backwards bisimilarity (k), i.e. it is the incoming paths that
are considered for purposes of determining bisimilarity. Forwards bisimilarity
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<ContactList>
<Student>

<Name>Person1Name</Name>
<Contact>

<Email>person1name@example . com</Email>
</Contact>

</Student>
<StaffMember>

<Name>Person2Name</Name>
<Contact>

<Email>person2name@example . com</Email>
</Contact>

</StaffMember>
<StaffMember>

<Name>Person3Name</Name>
<Contact>

<Telephone >07780858382</ Telephone>
</Contact>

</StaffMember>
</ContactList>

Listing 1.1. XML Example

(i.e. the comparison of outgoing paths) can be used to exploit the sharing of
common sub-trees [13]. Applying forward and backward bisimilarity alternately
until a point is reached where no further changes are made to the node groupings,
produces an F&B-Index, which is the smallest index that accurately covers all
branching path queries (i.e. those where the query does not take a linear path
through the index)[19] Limiting the levels of bisimilarity used (as is the case
for backwards bisimilarity in the A(k)-Index above) and limiting the number of
times the main F&B-Index computation is performed produces a more compact
(j,k)-F+B-Index1 at the expense of accuracy [20]. These methods aid the access
to the XML data by supplementing or replacing the structural part of the doc-
ument. They also provide a basis for approaches to XML compression methods
that involve both the document structures and the data values contained within
them.

A variety of approaches have been used to design XML compressors that repre-
sent both the datagraph structure and the values contained within it. Character-
isitcs of key systems are summarised in Table 1. While the non-queryable meth-
ods require full decompression before any further processing may take place, the
queryable methods require different levels of decompression to answer a query.
This is related to the choice of backend compressor, with those methods using
gzip having to decompress complete blocks or containers to access a single value,
while the methods built upon dictionary or Huffman compression are able to di-
rectly access the individual required value, reducing the decompression workload.
A desirable feature is the ability to evaluate inequalities without the need to de-
compress individual values. A partial version of this is found in XCQ which can
make use of the maximum and minimum values stored in the block statistics
signature to quickly rule out an entire block of values. Thereafter the matching
blocks must be decompressed in their entirety to complete the query. In XQueC,

1 Where j and k specify the levels of forwards and backwards bisimilarity respectively.
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Fig. 1. Structural representation of forwards and
backwards bisimilarity
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Fig. 2. Effect of data
value distribution

the order-preserving nature of compression allows comparison of the individual
compressed values. Additional user input in the form of advance knowledge of
the query workloads is also required. This additional dependency on the user is
also seen in XMill and XWRT, which require the user to manually set a number
of parameters to achieve best performance.

The focus of the methods reviewed in Table 1 is the compression of entire data
structures rather than methods that are designed to compress data structures
that have been split into parts for sharing.

3 System Architecture

Bisimilarity-based structural summarisation naturally separates data into dis-
crete groupings (partitions), which have the potential to form the basis of a
system where small sections of a data structure can be distributed in an envi-
ronment that requires data to be shared. XML data can be partitioned using
a variety of approaches based around different charactersitics of the structure
[21]. Bisimilarity takes the surrounding structure into account and is shown to
provide a flexible method of grouping similar vertices, particularly in the context
of real world data structures. The partitioning used is based on the F&B Index
in which nodes of the datagraph are deemed to be bisimilar if their labels match
and the same is true for both the ancestor nodes (incoming paths) and descen-
dant nodes (outgoing paths) - this is applied repeatedly until a structure with
stable node groupings is found. The structure is supplemented by a numbering
scheme, which maintains the ordering of the data throughout [22]. Datagraph
nodes are grouped by the bisimilarity function described earlier, so each entry
within a particular vertex is of the one type and it is this type that appears
at the top of each vertex in the diagram. Entries are marked with a pre-order
number, which corresponds to the order in which the associated XML elements
appear in the original document - thus maintaining the order of the stored data.
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ROOT
0 ,19 ,1 ,21
Contac tLi st
1 ,18 ,2 ,20
Student
2 ,5 ,3 ,7
Name
3 ,1 ,4 ,3
CDATA
4 ,0 , 4 , 1 , ‘ ‘ Person1Name ’ ’
Contact
5 ,4 ,4 ,4
Email
6 ,3 ,5 ,3
CDATA
7 ,2 , 5 , 1 , ‘ ‘ person1name@example . com

’ ’
.
.
.

Listing 1.2. NSIndex File Format

Table 2. Experimental data structures

Regular Irregular

Benchmark Orders1 XMark2

Modified Orders3

Real World Legal4 NASA5

Medline6

Dream7

Rat8

Human9

1Subset of TPC-H represented as XML (15Mb)
2Variable structure and random text (10&30Mb)
3Value-based elements of TPC-H subset (15Mb)
4Court sentencing data (1&13Mb)
5Text of Midsummer Night’s Dream (0.15Mb)
6US National Library of Medicine bib (20Mb)
7Astronomical Data centre bibliography (24Mb)
8Ensemble rat genome annotation data (25Mb)
9Ensemble human genome data (25Mb)

They are also marked with post-order number, obtained from the last time each
element is encountered in the document. This may be thought of as the order in
which the end tags are found - with data values also numbered. Also recorded
in each vertex entry, though not shown in the diagram, is the level at which
the entry appears within the structure and the size of the entry, including any
sub-trees that appear beneath it in the structure. For example, the Contact

entry (17,16) shown at the right-hand side of Figure 1 will have level 4 (ROOT
is counted as level 1) and size 3, counting itself and the two entries below it
in the structure - Telephone(18,15) and CDATA(19,14,"07780858392"). This
example also shows that the structural part of the Telephone element is stored
in vertex (18,15), while the data value itself is stored in a separate vertex that
holds the data entry (19,14,"07780858392").

The structure is extended by a storage module that allows the structure to be
written to disk. The physical representation is comma separated values (CSV)
format as shown by the example in Listing 1.2. The data type of the vertex is
output first, followed by each entry contained within the vertex on subsequent
lines. Each structural entry is recorded as a sequence of pre-order, post-order,
level and size, with the data value additionally being recorded for data entries.

4 Experimental Work

The main computational challenges addressed by this work are to devise a con-
sistent way of partitioning semi-structured data so that it is possible to represent
the associated data values in a compact form and yet retain the ability to address
each value separately in this compressed form without the need to decompress
the entire data structure.
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Data Vertex C Dictionary 3

Pre Post Level Size Value

30 28 3 1 0

32 30 3 1 1

Dictionary 3

0 Databases

1 Programming

Data Vertex D Dictionary 4

Pre Post Level Size Value
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00 Miller

01 Smith
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Fig. 3. Data vertices and dictionaries be-
fore reduction
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25 22 4 1 00
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Dictionary 2

00 Miller

01 Smith

10 Stewart

Deleted
Duplicate of
Dictionary 1

Deleted
Subset of
Dictionary 3

Fig. 4. Data vertices and dictionaries af-
ter reduction (updated values shaded)

To permit the sharing of independent segments of data it is necessary to
make use of an appropriate storage method. This must arrange the data into
sections and allow these to be transferred and accessed individually. While ex-
isting XML compression methods group data into containers for compression
purposes, the entire compressed structure must be transferred before any query-
ing may take place, making these methods unsuitable for sharing data segments
independently. The method of data storage proposed here combines data parti-
tioning with a system of compression to store the data values. Dictionary-based
compression was chosen over character-based compression as a consequence of
the overall functionality available with the former approach [23]. The structural
summarisation produced by bisimilarity affects the groupings of data values.
These experiments evaluate the effect of changing the partitioning scheme on
the number and size of data dictionaries required. Since the distribution of data
values influences dictionary structure, a range of real-world data sets were used
to assess the effect of partitioning. These sets were further classified as being
regular or irregular in structure and supplemented by benchmark data (Table
2)Regular benchmark data includes both value based data (ModifiedOrders) and
a mix of value and text based (Orders).

Bisimilarity options (no bisimilarity where data entries are grouped by label
only, full backwards bisimilarity, full forwards bisimilarity and full forwards and
backwards bisimilarity) affect the compressed size of an XML structures par-
titioned by these approaches. Changing the partitioning has an effect on the
number of data vertices over which the data values are distributed. It is this
distribution of data values that has an effect on the overall compressed data
size, as repeated data values within a single data vertex require only one unique
entry in the associated data dictionary, while repeated values that occur across a
number of data vertices will have an entry in multiple dictionaries. An example
is given in Figure 2 using the data values A, A, B, B, B. If, as shown in Figure
2(a), these are partitioned in such a way that all of the B values fall into the
same data vertex, then all three values are described by a single entry in the
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ROOT
0 ,19 ,1 ,21
Contac tLi st
1 ,18 ,2 ,20
Student
2 ,5 ,3 ,7
Name
3 ,1 ,4 ,3
CDATA, Contac tLi st . 0 . d i c <−− d i c t i ona ry r e f e r e n c e
4 ,0 ,4 ,1 ,0 <−− data va lue r ep l a c ed by token
Contact
5 ,4 ,4 ,4
Email
6 ,3 ,5 ,3
CDATA, Contac tLi st . 1 . d i c <−− d i c t i ona ry r e f e r e n c e
7 ,2 ,5 ,1 ,0 <−− data va lue r ep l a c ed by token
.
.
.

Listing 1.3. NSIndex Compressed File Format

dictionary associated with that data vertex. In this case the total dictionary size
will be the size of value A plus the size of value B. In addition, each entry in
the dictionary is related to an integer, which is used as a token to replace the
entry in the datagraph structure. If as in Figure 2(b) the B values are separated
into two separate data vertices, then an entry will be required in the dictionary
associated with each data vertex containing a B. In this example, the result is
that an extra dictionary entry for value B must be stored in the second data
dictionary, increasing the overall dictionary size. This could have a considerable
effect on the overall size of dictionaries, especially when longer data values are
involved. A set of associated data dictionaries containing only the unique entries
from each vertex was created for each of the four differently-partitioned sets of
data vertices for each data set.

The overall size of the compressed data values and the associated dictionar-
ies for each partitioning scheme is of interest here, in particular whether there
are any particular bisimilarity options that perform consistently well across the
various data sets used. Also of interest is the number of dictionaries produced
as, with a view to creating manageable segments of data, the smaller the indi-
vidual dictionaries, the more there will necessarily be. Listing 1.3 incorporates
dictionary references and the encoded data values given in Listing 1.2.

When a datagraph structure is loaded from a file, each data vertex will hold
the data entries with their tokenised data values and a reference to the associated
dictionary. The dictionary itself is held centrally, which permits multiple vertices
to refer to the same dictionary. Top-down queries over the datagraph would
lead to a large number of dictionary decode actions and consequent poor query
performance. Such an approach would select all data entries of the correct type
for each query predicate before linking the entries that matched the last predicate
back to the previous one and so on. An example is given in Table 3(a) based
on the query /A/B/"Data". Table 3(b) shows the compressed query strategy. At
each stage, only those vertices that are children of the vertices at the previous
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level and of the correct type are considered as potential results. This is in contrast
to the uncompressed strategy, which noted all the individual data entries of the
correct type for each stage regardless of where in the overall structure they were
situated. The compressed strategy takes advantage of the entries being bundled
together into vertices and these vertices being linked by edges. Traversing the
edges means that only the child vertices are considered at the next stage of query
resolution. This greatly reduces the number of vertices to be considered at each
stage, which can be important when atomic values are being considered. For
each data vertex to be checked, the query data value must be encoded using
the appropriate dictionary before the contained data entries can be evaluated -
it is therefore an advantage to have limited the number of data vertices to be
checked.

Whichever partitioning method is chosen, there is potential for a large num-
ber of data dictionaries to be created. The nature of the bisimilarity-based sum-
marisation is such that the logical domains will be split across a number of data
vertices and there arises the possibility of repetition of values across the set
of data dictionaries. This makes poor use of storage space, particularly where
there are duplicate dictionaries but also where one dictionary is a wholly con-
tained subset of another. Removing redundancy is straightforward in the case
of duplicate dictionaries - the duplicate is deleted and any data vertices that
referenced it are updated to make use of the remaining dictionary. There is no
need to change the compressed data tokens contained in these data vertices. For
subsets, the process is slightly more involved as the additional values contained
within the superset dictionary mean that the values in data vertices previously
using the subset dictionary may be represented by different tokens in the super-
set dictionary. Therefore to rationalise the dictionaries, a translation table must
be created to update the old tokens in the data vertex, which refer to values
in the subset dictionary, to tokens that point to the same value in the new su-
perset dictionary. An example of these processes is shown in Figures 3 and 4.
The compressed data vertices and dictionaries before the reduction process are
illustrated in Figure 3 with each of the four example data vertices having an
associated dictionary. Dictionaries 1 and 2 are duplicates of each other and the
values stored in Dictionary 4 are a subset of those in Dictionary 3. As depicted in
Figure 4, the reduction process disposes of Dictionary 2 and points Data Vertex
B at Dictionary 1 (no change to the compressed data values is required as these
dictionaries are identical). The subset Dictionary 4 is then removed with Data
Vertex D amended to point to Dictionary 3. In this case the compressed data
tokens stored in the data vertex are updated to reflect the encoding used by
the new dictionary. The problem here is to compare each dictionary using the
fewest possible file accesses. In the worst case each file would have to be checked
against every other file to test for duplication (n(n− 1)/2 comparisons) and for
the existence of a subset (a further n(n− 1) comparisons). Comparisons can be
reduced by using advance knowledge of dictionary file and token sizes gathered
as the dictionaries are created. This means only dictionaries of the same token
size are compared while file sizes can be used to determine whether to test for
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Table 3. Query example

(a) (b)
Uncompressed approach Compressed approach
Note all A entries Note all A vertices
Note all B entries Search children of A to find B vertices
Note all entries matching “Data” Search children of B to find “Data”

entries
Retain B entries with links to Retain B entries with links to “Data”
“Data” entries entries
Retain A entries with links to Retain A entries with links to remaining
remaining B entries B entries
Return results Return results

duplication or a subset and, in the case of the latter, which dictionary to treat
as the potential superset and which to treat as the potential subset.

5 Results and Discussion

Figure 5 displays the results produced by the various bisimilarity strategies ap-
plied to the sample data sets. For each data set processed using the no bisimi-
larity option, only one data vertex is produced. With no bisimilarity, datagraph
nodes are grouped by their label and just as all nodes of type StaffMember or
Student would be grouped together, so too the CDATA nodes (which contain all
the data values) are grouped into a single data vertex. The addition of forwards
bisimilarity causes no change in the number of data vertices - each data set again
having only one. Although forwards bisimilarity may have effects on the parti-
tioning of structural nodes elsewhere in the structure, a method that exploits
outgoing paths predictably has no effect upon the data-containing leaf nodes, as
these have no descendant nodes for forwards bisimilarity to examine.

Working in the opposite direction, the use of full backwards bisimilarity results
in an increase in the number of data vertices produced. By looking back up the
datagraph at the ancestor nodes, the names of the XML entities in each data
set are taken into account during partitioning and this leads to the single data
vertex being split into multiple data vertices. Data set variation in the number
of data vertices produced using backwards bisimilarity results from both the
number of different XML entity names within each data set and the number
of levels contained within each datagraph. The net result of partitioning using
this method is that one data vertex is produced for each uniquely-named path
through the datagraph. Full forwards and backwards bisimilarity alternately
applies the bisimilarity rules in each direction until a stable structure is found.
This means that a split caused by forwards bisimilarity higher up the datagraph
can have an effect on the data vertices produced at the bottom of the structure
when backwards bisimilarity considers the ancestors of each data node. The full
forwards and backwards bisimilarity partitioning method is clearly influenced
by the semi-structured nature of the test data sets. This is most apparent for
XMark-30, where the irregular structure of the data set leads to a large number
of data vertices when forwards and backwards bisimilarity is employed. This
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Table 4. Path queries evaluated in Figure 8

Q# Data Set Query
Q1 XMark10 /regions/africa/item
Q2 XMark10 /regions/*/item
Q3 Legal-1 /sis/pc age=“21”
Q4 Legal-1 /sis/[pc judge=“J1” & pc category=“C1”]
Q5 Orders-1 /T/O CUSTKEY=“370”
Q6 Orders-1 /T/[O ORDERSTATUS=“O” & O ORDER-PRIORITY=“1-URGENT”]

form of bisimilarity produces the highest number of data vertices across all data
sets with the exception of Orders-15 and ModifiedOrders-15. These data sets
have a simple, regular structure which is unaffected by forwards bisimilarity -
there are no variations in outgoing paths for any type of node.

The compressed size is the size of the data dictionaries plus the size of the
compressed data values (as tokenised using the dictionaries). Figure 6 shows that
as with results for the number of data vertices produced, the compression levels
achieved for the data sets are the same for both the no bisimilarity and the full
forwards bisimilarity partitioning methods. Again this is expected as the result
of the partitioning process is the same for each method.

The distribution of the data values across the data vertices affects the impact
of backwards bisimilarity. In the case of XMark-30 the introduction of backwards
bisimilarity increases the compressed size over that produced using no bisimi-
larity. In this case the redistribution of the data values into a greater number
of data vertices has led to a reduction in the overall levels of repetition within
those data vertices consequently the dictionary-based scheme cannot operate as
effectively and the compressed size rises.

The combined use of full forwards and backwards bisimilarity leads to an
increase in the number of data vertices. This affects data value distribution
and consequently the compressed data size. The increase in compressed size for
XMark-30, Legal-1, Legal-13, Medline and NASA is caused by a reduction in
the repetition of data values within the data vertices, while Dream, Rat and
Human all reduce in compressed size as the increased distribution of data values
across the data vertices separates the values in such as way as to allow the use of
smaller token sizes. As previously noted, forwards bisimilarity has no effect upon
the number of data vertices in the Orders-15 and ModifiedOrders-15 data sets
and consequently has no effect on compressed sizes for these data sets either.

On balance it appears that, in terms of compressed data size, the full back-
wards bisimilarity partitioning method offers the greatest benefit for the majority
of data sets. The significant exception to this is XMark-30 which experiences the
best compression when using no bisimilarity (grouping by label only), and to a
lesser extent the Dream, Rat and Human data sets which all slightly favour
the full forwards and backwards bisimilarity method. However, the overall com-
pressed size is only one factor when selecting a partitioning method, the number
of data vertices produced must also be considered as this has an effect on indi-
vidual data vertex size. Therefore, despite the slight adverse effect on the overall
compressed size of some data sets, it is considered that the greater number of
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Fig. 5. Effect of bisimilarity on number
of data vertices

Fig. 6. Effects of bisimilarity on com-
pressed sizes

Fig. 7. Summary of dictionary reduction
effects

Fig. 8. Effect of partitioning the struc-
ture on query performance

data vertices produced by the full forwards and backwards bisimilarity method
makes it the most reasonable compromise.

The work on querying the compressed structure, had two key objectives: first
to demonstrate that the data values remained accessible in their compressed
form and second to show that, in taking the partitioned structure into account,
a query strategy could be formed that reduced the segments of the data structure
required to be accessed to answer a query.

Query processing was evaluated by comparing the behaviour of the partitioned
datagraph with the unpartitioned version. Dictionary structures were generated
by using full F&B partitioning (Figure 8). Table 4 lists six queries performed
over three of the test data sets - Legal-1, Orders-1 and XMark10. Performance is
assessed by recording the number of vertices that need to be accessed to resolve
each of the queries.
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For structural queries (Q1 and Q2), the number of vertices accessed is reduced
because the partitioned strategy accesses only those vertices which appear below
the target node. As a purely structural query, neither query method accesses
any data vertices. In Q2, the unpartitioned approach accesses all vertices, both
structural and data, as it cannot distinguish between data and structural vertices
in the context of the wildcard character.

For Q3 to Q6, the number of structural vertices required by each strategy does
not differ between the query strategies. Given the short, regular structures of
these data sets this is to be expected. There is however, variation in the number
of data vertices. Due to the way in which the unpartitioned query strategy
processes the query, each data vertex in the structure is accessed to check for
matching data values. By contrast, the partitioned strategy only accesses the
data vertices that satisfy the structural part of the query, reducing the pool of
potential matches at each stage, so that a much smaller number of data vertices
are required. In the case of Q3, the structure-minded strategy is able to narrow
its search to only the 10 data vertices which hold pc age values, as opposed to
the full set of 346 data vertices that the unpartitioned strategy must access.

Changes to the total dictionary file sizes for each data set as a consequence of
dictionary reduction are shown in Figure 7. For the Medline data set, 71% of its
dictionaries have been removed by the reduction process, yet this leads to only
a 4% reduction in logical dictionary size. This is because the dictionaries that
have been removed are small. The large gap between the logical size reduction
and the “size on disk” reduction stems from the removed dictionaries being much
smaller than the 4Kb unit of disk space allocated by the filing system (the system
was implemented on NTFS). Although this applies to every dictionary, as each
logical file size is rounded up to the next 4Kb disk unit, the amount of wasted
disk space depends on how close the dictionary is to filling the last disk unit
allocated to that file. The effect is most pronounced on the smallest dictionaries,
where the wasted disk space can form a much higher percentage of the “size on
disk” allocated to the dictionary. It is also noted that for those dictionaries under
a logical size of 2Kb, the wasted disk space will exceed that logically required
by the dictionary entries. Where the logical sizes of the dictionaries removed are
larger, such as with the Rat data set, the gap between logical size and “size on
disk” is much lower as the wasted disk space forms a smaller percentage of the
disk space allocated by the filing system.

A benefit of the dictionary-based scheme is that only those dictionaries actu-
ally involved with a particular query need to be accessed by the query system.
This has implications where files are being requested over a data connection. In
such a scenario the bandwidth utilisation would be limited to only those dictio-
naries that are useful. This is in contrast to other queryable ([8], [9], [10], [11])
for which the data structure must be transferred as a complete single entity.

It is not simply the total size of the dictionaries that is a potential benefit
of dictionary reduction. While these savings in storage space are useful, the
removal of the redundant dictionaries also means that the surviving dictionaries
may relate to more than one data vertex within the datagraph. This increases
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the likelihood that additional user queries may be satisfied using dictionaries
that have already been acquired.

Further improvements are possible by combining dictionaries with overlapping
contents where the two dictionaries use the same size of token. Such a method
would reduce the number of dictionaries without impacting on the compressed
data size. However, any method of combining dictionaries that causes the token
sizes within the compressed data to increase must be treated with caution, as
the reduction in terms of overall dictionary size could easily be negated by the
consequent increase in compressed data size. A trade-off is possible between
dictionary numbers and compressed data sizes that allows for less wastage of
the allocated storage space. In some cases, tokens can be represented in fewer
bits than are used to represent an integer. In addition, further compression (eg
Huffmann coding) may usefully be applied to the dictionaries. This could be
particularly helpful where large text elements are contained within the data
values, such as those in the Orders data set, as these are currently stored in the
dictionaries in their original uncompressed form. While this could have benefits
in terms of space occupied by the dictionaries, there is likely to be some impact
on query performance.

6 Conclusion

The aim of this work has been the evaluation of a data storage model that facil-
itates the sharing of individual segments of data while maintaining support for
user queries. It was proposed that this could be achieved using a combination
of bisimilarity-based partitioning and dictionary-based compression. Work on
the integration of data value compression described the steps necessary to build
dictionary-based compression into datagraphs. The construction of dictionaries
and the subsequent encoding of data values provides the basis for a query strat-
egy that can deal with compressed values and take advantage of the partitioned
structure. It was demonstrated that data values remained queryable in their
compressed form and that the use of a structure-aware query strategy enabled
the evaluation of queries using only the relevant parts of the data structure.

The contribution of this work is the evaluation of a data storage model that
combines bisimilarity-based partitioning and dictionary compression methods.
The evidence presented suggests that this approach has benefits in terms of
data storage. Support for queries is not only maintained but also demonstrated
to access only a fraction of the entire data set. The resulting structure is such
that it lends itself to future exploitation in a system that shares independent
segments of data.
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