Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Reflection/transmission confocal microscopy characterization of single-crystal diamond microlens arrays

Gu, E. and Choi, H.W. and Liu, C. and Griffin, C. and Girkin, J.M. and Watson, I.M. and Dawson, M.D. and McConnell, G. and Gurney, A.M. (2004) Reflection/transmission confocal microscopy characterization of single-crystal diamond microlens arrays. Applied Physics Letters, 84 (15). pp. 2754-2756. ISSN 0003-6951

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Using the method of photoresist reflow and inductively coupled plasma dry etching, we have fabricated microlens arrays in type-IIa natural single-crystal diamond, with diameters down to 10 µm. The surface profile of the microlenses was characterized by atomic force microscopy and was found to match well with a spherical shape, with a surface roughness of better than 1.2 nm. To characterize the optical properties of these diamond microlens arrays, a laser scanning reflection/transmission confocal microscopy technique has been developed. This technique enabled the surface profile of the microlenses to be measured simultaneously with optical parameters including focal length and spot size, opening up an application area for confocal microscopy.