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Abstract. This paper will address an innovative bio-inspired algorithm
able to incrementally grow decision graphs in multiple directions for dis-
crete multi-objective optimisation. The algorithm takes inspiration from
the slime mould Physarum Polycephalum, an amoeboid organism that
in its plasmodium state extends and optimizes a net of veins looking
for food. The algorithm is here used to solve multi-objective Traveling
Salesman and Vehicle Routing Problems selected as representative ex-
amples of multi-objective discrete decision making problems. Simulations
on selected test cases showed that building decision sequences in two di-
rections and adding a matching ability (multi-directional approach) is
an advantageous choice if compared with the choice of building decision
sequences in only one direction (unidirectional approach). The ability to
evaluate decisions from multiple directions enhances the performance of
the solver in the construction and selection of optimal decision sequences.
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1 Introduction

The idea that nature can inspire humans to solve complex decision making prob-
lems was widely used over the past two decades. A number of bio-inspired al-
gorithms designed to solve decision making problems was and still are studied
and developed. An example is the ACO (Ant Colony Optimisation) alghorithm
[1] that takes inspiration from the social behaviour of ants looking for food. Fol-
lowing this concept, the behaviour of other social animals was successfully used:
examples are bee colonies [2], �re�ies [3], birds [4].

The method proposed in this paper takes inspiration from Physarum Poly-
cephalum, see Fig. 1, known as many-headed slime mould, a simple organism



Fig. 1. Physarum Polycephalum. Image courtesy of Howard County Bird Club at
www.howardbirds.org.

inahabiting moist areas that was endowed by nature with heuristics that can
be used to solve single-objective and multi-objective discrete decision making
problems. In [5] it has been shown that Physarum Polycephalum is able to solve
a maze �nding the shortest path that connects the maze's entrance and exit by
changing its shape. It has been shown also that a living Physarum is able to
recreate the Japan rail network [6] and the Mexican highway network [7], both
using an experimental arena with food sources at each of the major cities in
the regions. Physarum based algorithms have been developed recently to solve
multi-source problems with a simple geometry [8,9], mazes [10] and transport
network problems [6,10].

In this paper a multi-directional modi�ed Physarum Polycephalum algorithm
able to solve NP-hard multi-objective classical problems in operations research
is proposed. In [11,12,13] multi-objective bio-inspired algorithms, i.e. ant colony
algorithms, have been proposed and studied. The algorithm presented in this
work is a multi-objective generalization of the single-objective multi-directional
modi�ed Physarum solver previously presented in [14] for discrete decision mak-
ing.

In Sect. 2 the physiology of Physarum is introduced: discrete decision making
problems are modeled with decision graphs where nodes represent the possible
decisions while arcs represent the cost vector associated with decisions. Each arc
has a scalar dominance index associated which is calculated comparing all the
arcs leaving a node, as explained in Sect. 2. Decision graphs are incrementally
grown and explored in multiple directions using the Physarum-based heuristic.
This paper aims at proving that a multi-directional incremental Physarum solver
is more e�cient, in terms of success indexes (see Sect. 3.1), than a unidirectional
incremental Physarum solver when applied to the solution of multi-objective de-



cision problems that can be represented with directed symmetric decision graphs,
i.e. graphs where the contribution of an arc to a complete path can be evalu-
ated moving forward or backward along the graph. In [14] it has been already
shown that the single-objective multi-directional modi�ed Physarum algorithm
is more e�cient than the unidirectional algorithm when applied to small scale
single-objective discrete decision making problems. This thesis will be demon-
strated for the multi-objective algorithm in Sect. 4 solving some test cases. Bi-
objective Traveling Salesman and Vehicle Routing Problems (TSP and VRP),
introduced in Sect. 3, with a number of nodes between 10 and 100, were chosen
as representative examples of the above type of decision making problems, here
called reversible decision-making problems, i.e. problems in which a decision can
be taken either moving forward or backward along the graph, as explained in
Sect. 2.

2 Biology and Mathematical Modeling

Physarum Polycephalum is a large, single-celled amoeboid organism that ex-
hibits intelligent plant-like and animal-like characteristics. Its main vegetative
state, the plasmodium, is formed of a network of veins (pseudopodia). The stream
in these tubes is both a carrier of chemical and physical signals, and a supply
network of nutrients throughout the organism [9]. Physarum searches for food
by extending this net of veins, whose �ux is incremented or decremented de-
pending on the food position with reference to its centre. The longest is the
path connecting the centre with the source of food, the smallest is the �ux and
viceversa: best veins in terms of length that connect its centre with the food tend
to increase their radius and the �ux of nutrients inside, while longer veins tend
to decrement the �ux and close with time. This behaviour can be interpreted
as a natural attitude in optimising the energy required to feed the organism by
shape variation.

2.1 Problem Formulation: Multi-Objective Discrete Decision

Making

Given a solution j to a discrete multi-objective decision making problem P , with
cost vector sj = [sj1, s

j
2, ..., s

j
n] and a solution i with cost vector s

i = [si1, s
i
2, ..., s

i
n],

the solution j dominates i if sjk ≤ sik for all the k = 1, 2, ..., n and sjk < sik for
at least one k. The relation sj ≺ si states that sj dominates si. The dimension
of the vector sj expresses the number of evaluating criteria for a solution j. The
cost vector represents the cost associated with a decision. A general problem in
discrete multi-objective optimisation is to �nd the feasible non dominated solu-
tions to the given discrete multi-objective decision making problem P . Following
the theory developed in [18], it is possible to associate a scalar dominance index
I(s) to each solution. The lower is the index, the better is the solution: if one
considers the set of solutions S = {sj , si, sk} where sj ≺ si ≺ sk, the set of



Fig. 2. Generally a Physarum working in direct �ow (DF ) would build the decision
that brings from a to b, while the Physarum working in back �ow (BF ) would build
the symmetric decision bringing from b to a (left). In a traveling salesman problem
(TSP, right) nodes are �xed while arcs are built with time and a decision that brings
from a to b can be built from both DF and BF Physarum, as for the arc that connect
4 to 5.

associated scalar indexes will be I = {I(sj) = 0, I(si) = 1, I(sk) = 2}. All the
non-dominated solutions in a general set S form the set:

PF = {s|I(s) = 0} (1)

which is called Pareto front. Therefore, the solution of the problem P translates
into �nding the elements of PF .

2.2 Multi-Objective multi-directional Physarum Algorithmic

A reversible discrete decision problem can be modeled using a symmetric directed
graph. The reversibility of a decision that induces a change from a state a to
state b indicates here that the decision that brings back from b to a exists and
can be evaluated. Not necessarily these two decisions have the same cost. The
symmetric directed graph can be seen as the superposition of two directed graphs
(direct-�ow, DF, and back-�ow, BF, graphs) whose nodes are coincident and
edges have opposite orientation. In so doing, the decision between state a and b
has a forward link a to b and a superposed backward link b to a. It is assumed
that the �rst decision node is the heart of a growing Physarum in DF, and the
end decision node the heart of a growing Physarum in BF. The two Physarum
are supposed able to incrementally grow the decision graph in the two directions



Fig. 3. Example of acrs' values assignment. Lij and Iij are respectively the cost vector
and dominance index associated with the general decision from node i to node j.

by extending their net of veins. A multiple direction growing decision Physarum
graph is obtained. In the example mentioned before, the Physarum working in
DF would build its graph by creating arcs that move from a to b. If the graph
was traversed by a virtual agent, the agent would walk along an arc from a to
b. The other Physarum would build its graph in the opposite direction then
walking along each arc from b to a. The result is a graph where both nodes and
links are incrementally built by two expanding Physarum.

In this work the decisional problems analyzed are the TSP and the VRP, see
Sect. 3; being Hamiltonian paths, all the nodes are built at the beginning, and
only the arcs are built with time. This means that both the Physarum working
in DF and the one working in BF can build arcs connecting two nodes in both
directions. If the graphs built by the two Physarum are fully connected after a
transient of growth, which is the case in this paper, two superposed symmetric
directed graph are obtained. Fig. 2 shows a simple example for a TSP problem.

Exploration Using the Hagen-Poiseuille law, the �ux through the net of Physarum
veins is [6,8,9,10]:

Qij =
πr4ij
8µ

∆pij
Lij

(2)

where Qij is the �ux between i and j, µ is the dynamic viscosity, rij the radius,
Lij the length and ∆pij the pressure gradient.

In a multi-objective algorithm the length Lij , representing the cost of the
decision that brings from i to j, is a vector Lij . Its value can be substituted
with the scalar dominance index Iij ∈ N0, see Fig. 3: the cost vectors associated
with each veins that connect a node Ni with other nodes Nk

j can be compared
and the dominance indexes can be evaluated. Eq. (2) becomes:

Qij =
πr4ij
8µ

∆pij
(Iij + 1)

(3)

where plus 1 was added to avoid a singularity for Iij = 0.



Table 1. Input parameters for the modi�ed Physarum solver.

m Linear dilation coe�cient, see Eq. (9).
ρ Evaporation coe�cient, see Eq. (5).
GFini Initial growth factor, see Eq. (7)
Nagents Number of virtual agents.
pram Probability of rami�cation, see Sect. 2.2.
α Weights on rami�cation, see Eq. (8).
kexplosion radii upper limit, see Eq. (10)

The strategy of using a single structure (in this case the �ux) has been pre-
viously examined in [11] for Ant Colony Optimisation applied to multi-objective
problems (where a weighted sum of all the objectives is used instead of the in-
dex Iij). Another strategy, as reported in [11], could be the use of several �uxes
structures ([11] refers to pheromones), one for each objective. The �rst strategy
was chosen because it has the advantage of being easy to implement and usable
when the number of objectives is high, as in many real-world problems. This
considerations will be further discussed in Sect. 4.1.

Diameter variations then cause a change in the �ux. Veins' dilation due to
an increasing number of nutrients �owing can be modeled using a monotonic
function of the �ux:

d

dt
rij

∣∣∣∣
dilation

= f (Qij) (4)

where f(0) = 0 , i.e. linear, sigmoidal, etc. Veins' contraction, similarly to the
evaporative e�ect in ACO [1], can be assumed to be linear with radius:

d

dt
rij

∣∣∣∣
contraction

= −ρrij (5)

where ρ ∈ [0, 1] is de�ned evaporation coe�cient. The probability associated
with each vein connecting i and j is then computed using a simple adjacency
probability matrix based on �uxes:

Pij =

{
Qij∑

j∈Ni
Qij

if j ∈ Ni

0 if j /∈ Ni

(6)

where Ni is the set of neighbour for i.
An additive term in the veins' dilation process, whose �rst main term is

expressed in Eq. (4) was added in the algorithm and takes inspiration from the
behaviour of the amoeba Dictyostelium discoideum [16]. This dilation is:

d

dt
rijbest

∣∣∣∣
elasticity

= GFrijbest (7)

where GF is the growth factor and rijbest the veins' radius of the best chains
of veins, i.e. the veins that form the paths in the decision graph that are in the



current calculated Pareto front. This dilation, as explained in [14], simulates the
tendency of best veins to further increase their radius for the e�ect of the �ux.

Growth in multiple directions and matching The incremental growth of decision
network in multiple directions is then based on a weighted roulette. Nutrients
inside veins are interpreted as virtual agents that move in accord with adjacency
probability matrix in Eq.( 6). Once a node is selected, there is a probability pram
of rami�cation towards new nodes that are not yet connected with the actual
node. The value of pram can be chosen a priori or a law can be de�ned, i.e.
pcram = pcram(Ac), where c is the current ramifying node and Ac the number
of arcs that leave node c. In this work a priori values were chosen before the
simulations.

If rami�cation is the choice, a weighted roulette, based on objective function
evaluations, helps the Physarum with the selection and construction of a new
link. The probability of a new link construction from the current node c to a
new possible node ni ∈ N , where N is the set of new possible decisions, is here
assumed to be inversely proportional to the cost Icni of the decision between c
and ni, i.e. the dominance scalar index associated with the decision:

pcni ∝
1

(Icni + 1)α
(8)

where α is a weight. Once a new link is built, a complete decision path is con-
structed (creating other links if necessary).

Assuming then the presence of two counter expanding Physarum, one in
direct-�ow DF and one superposed in back-�ow BF, as explained in the previ-
ous paragraph, a matching condition can be then de�ned. If an arc connecting
two nodes that belongs to DF and BF Physarum respectively, exists or can be
created, it is traversed by the agent and becomes part of both the DF and the BF.
Some matching strategies were compared in [14] for single-objective problems.
In this paper, two matching strategies were implemented in the multi-objective
modi�ed Physarum solver.

The �rst one, called selective-matching, follows an elitist criterion where at
each generation a joint path is selected if and only if its total cost vector is not
dominated by the previous joint paths selected during the same generation, as
in [14]. It could be noted that if a high number of exploring agents is chosen, a
high number of paths are matched. This could lead to a slowdown of the code
speed, especially if complete decision sequences are long, as in more complex
multi-objective VRPs and TSPs (more than 20 cities). For this reason, an other
strategy, called mix-matching, was designed for larger scale problems. Selective
matching is done only considering the best n solutions in DF and BF during a
generation, so that worst routes are excluded a priori. A value n = dim

5 , where
dim is the problem dimension, i.e. the number of cities for TSP and VRP, was
used in the simulations presented in this paper. Furthermore the n best decisions
in DF and BF are matched with the Pareto front found by the algorithm at the
time of matching.



Algorithm 1 multi-directional incremental modi�ed Physarum solver

initialize m, ρ, GFini, Nagents, pram, α
generate a random route from start to destination both in DF and BF
for each generation do

for each virtual agent in all directions (DF and BF ) do
if current node ̸= end node then
if rand ≤ pram then

using Eq. (8) create a new link to a node not yet connected
update scalar dominance indexes for current node, see Sect. 2.1

else

move on existing graph using Eq. (6)
end if

end if

end for

look for possible matchings among decision sequences in DF and BF

update Pareto front
contract and dilate veins using Eqs. (4), (5), (7)
if rij exceeds upper radius limit, see Eq. (10) then

block radius increment
end if

update �uxes and probabilities using Eqs. (3), (6)
end for

These matching conditions can be interpreted as a communication ability be-
tween the two Physarum: they move according to their nature and the knowledge
acquired exploring the decision space, which contains both personal experience
and shared information.

Restart procedure Simulations on selected test cases (see Sect. 4) were carried out
adding in the Physarum algorithm two restart procedures to avoid stagnation
on local minima. The �rst restart procedure, called restart1, is a routine for the
adaptive control of the growth factor GF . This control was introduced in order
to incrementally boost the e�ect of GF during a simulation, driving exploring
agents towards best veins. Simulations showed that the adaptive control of GF
helps the convergence of the algorithm towards optimal solution when used on
small scale problems (number of cities less than 16 in this paper). Given an initial
value for the growth factor GFini, GF is incremented by a �xed percentage
σ after every generation. If the highest probability pPF

best associated with the
paths in the calculated Pareto front so far is higher than a �xed value plowlim ,

the increment is set to zero. Then, if pPF
best exceeds a value phighlim , GF is set

equal to GFini and veins are dilated and contracted to their initial value. In
the present paper is assumed σ = 0.01, plowlim = 10−4 , phighlim = 0.85 for the

bi-objective Vehicle Routing Problem test case Tuscany10 and phighlim = 0.95
for the bi-objective Traveling Salesman Problem test case Ulysses16. A second
restart procedure, called restart2, was designed for larger scale problem, i.e. the
bi-objective traveling salesman instance KroAB100. It is based on minimum



Table 2. Values used as input parameters - TSP test case (�rst row) and VRP test
case (second row).

Instance m ρ GFini Nagents pram α kexplosion

Ulysses16 5× 10−5 1·10−5

Nagents
5 · 10−3 100 0.8 0 108

Tuscany10 5× 10−5 1·10−5

Nagents
1 · 10−3 150 0.8 0 108

KroAB100 5× 10−5 5·10−6

Nagents
5 · 10−3 50 1 0 5

nodes in common among decision sequences in a generation and among decision
sequences and Pareto front; the algorithm is restarted if one of the following
conditions is achieved:
I) the minimum number of nodes in common ncommin, obtained comparing all
decision sequences among each other in a generation, exceeds a threshold ncom.
II) a fraction β of the decision sequences built during a generation belong to the
calculated Pareto front at same generation.
In this paper a value ncom = dim

2 , where dim is dimension of the problem, i.e. the
number of cities, and a value β = 2

3 were used. The goal of this restart procedure
is to avoid both a stagnation to local single minima and to the calculated Pareto
front itself.

Considerations on the algorithm The set of Eqs. (2)-(6) can be implemented
as in the following. In accordance to Eq. (2), �ux in each vein is proportional
to the radius and inversely proportional to the length (the scalar dominance
index in a multi-objective problem, Eq. (3) ). These two main parameters are
taken into account in the algorithm. Once a vein is selected by a virtual agent
in a generation, its radius is incremented using Eq. (4). In the present work, a

function linear with respect to the product between the radius r
(n)
ij of the veins

traversed by agent n, and the inverse of the sum of dominance indexes (I
(n)
tot , see

Sect. 2.1), associated with each arc of the decision taken by agent n, will be used
for the veins' dilation:

d

dt
r
(n)
ij

∣∣∣∣
dilation

= m
r
(n)
ij

I
(n)
tot

(9)

where the coe�cientm is the linear dilation coe�cient. Evaporation is taken into
account using Eq. (5) for each agent. Fluxes are then calculated using Eq. (3) and
probabilities are updated in accordance with Eq. (6). Due to the mathematical
nature of the algorithm (the �ux is related to the fourth power of the radius), an
upper limit on the maximum vein radius was introduced in order to avoid veins'
�ux explosion. If the radius rij exceeds a maximum value rmax, the vein dilation
is blocked up until the radius is again below rmax for the e�ect of evaporation.
This upper limit, called kexplosion, is given as ratio between rij and rini:

kexplosion =
rij
rini

(10)



where rini is the initial radius of the veins. The main parameters of the modi�ed
Physarum solver are listed in Table 1. The initial radius of the veins rini is
always set equal to 1 in the simulations presented in this paper. The pseudocode
of the multi-directional incremental modi�ed Physarum solver is provided in
Algorithm 1.

3 Application to Multi-Objective Traveling Salesman and

Vehicle Routing Problems and Benchmark

In single-objective optimisation the Traveling Salesman problem, TSP, is the
problem of �nding the shortest tour that visit each city of a given set S of n
cities.

In the multi-objective optimisation case considered in this paper the cost
function to be minimized is a vector of two values: the total length Ltot =

∑
j Lj

and the total road tra�c Ttot =
∑

j Tj of each tours, where j = 1, ..., n is the
index that identi�es each part of the tour. The road tra�c is here assumed to
be inversely proportional to the length Tj = 1/Lj . The shorter is the tour, the
higher is the probability that the tour is chosen by drivers, increasing the road
tra�c. The total road tra�c Ttot =

∑
j Tj will be called Road Tra�c Index in

the following. Although con�icting criteria, both length and road tra�c in a tour
have to be minimised.

TSPLIB [17] was used to benchmark the proposed Physarum algorithm, de-
veloped in Matlab R⃝ R2010b, on the TSP problem. In Sect. 4 are reported the re-
sults obtained by applying the multi-objective multi-directional Physarum solver
to test case Ulysses16 that was modi�ed adding the road tra�c to the cost func-
tion and to the test case KroAB100, obtained from the single-objective intances
KroA100 and KroB100. For the KroAB100 the consideration above on the road
tra�c index does not apply: it is a bi-objective problem itself and two objectives
to be minimised are included in the instance.

The multi-objective Vehicle Routing Problem, VRP, considered in this paper
is a similar problem. Given a set of n cities with a demand k, whose reciprocal
distance Lj and road tra�c Tj = 1/Lj are known, v vehicles of capacity c,
d depots located in �xed cities, the VRP is the problem of delivering goods
located in the depots using a de�ned amount of vehicles with �nite capacity.
The goal is to satisfy the demand of each city minimizing the cost functions, i.e.
the distance and road tra�c. VRP reduces to a TSP if there is only one vehicle
with in�nite capacity. When the modi�ed Physarum algorithm is applied to
VRP, a probability skew factor ψ is included in the algorithm. If an agent is
not obliged to go to depot, the probability to reach the depot is lowered of a
factor (1 − ψ). Other probabilities are then risen of a same value in order to
have the sum of probabilities equals to 1. The skew factor ψ is introduced in the
model to avoid frequent returns to depot in the decision sequences and is here
set equals to 0.5. The Physarum solver applied to VRP was tested on a map of
9 cities plus one depot. The map is built using 9 Italian cities (Firenze, Livorno,
Montecatini, Pistoia, Prato, Montevarchi, Arezzo, Siena, San Gimignano), with



0.8 1 1.2 1.4 1.6
150

200

250

300

350

400

450

500

550

600

650

Lenght

R
oa

d 
Tr

af
fic

 In
de

x

a) − TSP test case

 

 
Global
D
DB

400 500 600 700 800 900

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Lenght
R

oa
d 

Tr
af

fic
 In

de
x

b) − VRP test case

 

 
Global
D
DB

Fig. 4. Pareto front - TSP test case Ulysses16 at 6.5 · 105 function evaluations, (a)
- VRP test case Tuscany10 at 3 · 105 function evaluations, (b). In the legend, Global
indicates the global Pareto front obtained from all the runs of the D and D&B algo-
rithms (1600 for the VRP test case and 2800 for the TSP test case), while D and D&B

indicate an example of a Pareto front found during a run of the D and D&B algorithms
respectively.

a city considered the depot (Ponsacco). The Euclidean distance in kilometers
was used. VRP parameters were set to n = 9, k = cost = 1, v = 1, c = 4, d = 1,
i.e. one vehicle with capacity equals to 4, one depot and a constant demand
equals to 1.

3.1 Testing Procedure

The testing procedure proposed in [18] was used in this paper. Two metrics are
de�ned:

Mspr =
1

Mp

Mp∑
i=1

min
j∈Np

∥ fj − gi
gi

∥ (11)

Mconv =
1

Np

Np∑
i=1

min
j∈Mp

∥
gj − fi

gj
∥ (12)

where Mp is the number of elements, with objective cost function g, in the
true global Pareto front and Np is the number of elements, with objective cost
function f, in the Pareto front that a given algorithm is producing. Although
similar, the two metrics are measuring two di�erent things: Mspr is the sum,
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Fig. 5. Variation of the indexes of performance pconv and pspr with the number of
function evaluations - TSP test case Ulysses16, (a) and (b) - VRP test case Tuscany10,
(c) and (d).

over all the elements in the global Pareto front, of the minimum distance of all
the elements in the Pareto front Np from the ith element in the global Pareto
front: this metric would be high if Np was only a partial representation of the
global Pareto front. Mconv, instead, is the sum, over all the elements in the
Pareto front Np, of the minimum distance of the elements in the global Pareto
front from the ith element in the Pareto front Np: this metric would give a low
value if Np was an accurate, although partial, representation of the global Pareto
front.

From the considerations above, both the metrics Mspr and Mconv should be
low for a good estimate of the global calculated Pareto front. The indexes of per-
formance pconv = P (Mconv < tolconv) and pspr = P (Mspr < tolspr) will be used
to explore the e�ciency of the algorithm and to compare the multi-directional
and the unidirectional versions. Given n repeated runs, pconv is the probability
that Mconv achieves a value less than tolconv, while pspr is the probability that
Mspr achieves a value less than tolspr. 200 runs are su�cient in order to obtain
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Fig. 6. Pareto fronts for TSP test case KroAB100 at 4 · 107 function evaluations. In
the legend of �gure a), Global indicates the global Pareto front obtained from all the
runs of the D and D&B algorithms (40), while D and D&B indicate an example of
a Pareto front found during a run of the D and D&B algorithms respectively. In the
legend of �gure b), Global indicates the global Pareto front as in a), while Global, D
and Global, D&B indicate the global Pareto fronts obtained from all the runs of the D
and D&B algorithms respectively (20).

an error ≤ 5% with a 95% of con�dence [18]. For the TSP test case Ulysses16
the tolerances tolconv and tolspr are set equal to 0.0465 and 0.045 respectively,
for the VRP test case Tuscany10 to 0.030 and 0.035, and for the TSP test case
KroAB100 to 0.048 and 0.058.

4 Results

The multi-objective multi-directional modi�ed Physarum solver, named D&B
in the following, was compared against a multi-objective unidirectional modi-
�ed Physarum solver, named D. The D algorithm is obtained by freezing the
back�ow BF. The two algorithms were applied to the modi�ed symmetric trav-
eling salesman problem test case Ulysses16, to the symmetric traveling salesman
problem test case KroAB100 and to the vehicle routing problem test case Tus-
cany10, described in Sect. 3. The values used as input parameters in the simu-
lations, chosen after a series of trials, are listed in Table 2. Selected ones showed
best performance. The restart procedure restart1 and the matching strategy
selective-matching were used for Ulysses16 and Tuscany10, while restart2 and
mix-matching were used for KroAB100. Simulations were carried out on a 64-bit
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Fig. 7. Variation of the indexes of performance pconv and pspr with the number of
function evaluations - TSP test case KroAB100.

OS Windows 7 Intel R⃝ CoreTM2 Duo CPU E8500 3.16GHz 3.17GHz.

Ulysses16 & Tuscany10. In both the test cases the true global Pareto front
was unknown. In order to obtain a global Pareto front all the runs (1600 for the
VRP test case Tuscany10 and 2800 for the TSP test case Ulysses16 ) of the multi-
directional and unidirectional algorithms were used: two global Pareto fronts for
both the VRP and TSP test cases were built using all the solutions found by the
algorithms. In Fig. 4 the global Pareto fronts are shown. The �gure reports also
an example of Pareto front found by unidirectional (D) and multi-directional
(DB) algorithms, for bothUlysses16 and Tuscany10. Fig. 5 shows the variation
of the indexes of performance pconv and pspr with the number of function eval-
uations for the TSP test case ((a) and (b)) and for the VRP test case ((c) and
(d)). A function evaluation is de�ned as the call to the objective function, i.e.
each arc selected by the virtual exploring agents (see Sect. 2.2) is considered
a function evaluation. Results for the VRP test case Tuscany10, as shown in
Fig. 5 (c) and (d), demonstrate that the multi-objective multi-directional mod-
i�ed Physarum algorithm with matching ability (D&B) provides higher indexes
of performance pconv and pspr, than the multi-objective unidirectional modi�ed
Physarum algorithm (D), at all the function evaluations limit. This gain is up to
approximately 50% for the pspr and pconv at 3 ·105. The results for TSP test case
Ulysses16, reported in Fig. 5 (a) and (b), show that the multi-directional algo-
rithm provides better performance after 6 ·105 function evaluations and the gain
is up to 10% for both pspr and pconv at 6.5 ·105. The behaviour of the indexes of
performance for this multi-objective instance are similar to the behaviour of the
index of performance in [14] for the same TSP test case with single-objective:
the unidirectional algorithm tends to have a better performance during the early
stage of the simulation, then the performance of the multi-directional algorithm
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Fig. 8. Value of the metrics in Eqs. (11)-(12) for the D and D&B algorithms at 5 · 106
and 4 · 107 function evaluations.

exceeds the performance of the unidirectional.

KroAB100. As for the test cases above, for KroAB100 the true global Pareto
front was unknown. In order to obtain a global Pareto front all the runs (40)
of the multi-directional D&B and unidirectional D Physarum algorithms were
used. For this test case, only 20 runs were performed for each algorithm instead
of 200. However, this number of runs doubles the one used to compare vari-
ous algorithms on the same instance in [13]. In the following, Global is used to
indicate the Pareto front found by all the runs of the multi-directional and uni-
directional Physarum algorithms as explained above, while Global D and Global
D&B are used to indicate the global Pareto fronts obtained from all the runs of
the D and D&B algorithms respectively (20). Fig. 6 a) shows two examples of
Pareto fronts found after one single run of the D and D&B algorithms. Fig. 6 b)
shows a comparison of the Global D and Global D&B. Both �gures let the reader
see that the introduction of multi-directionality in the algorithm is an optimal
choice. This is con�rmed analyzing Fig. 7: while the indexes of performance pspr
and pconv of the multi-directional algorithm reach respectively 88% and 75%, the
ones of the unidirectional algorithm are still under 1%. However there is a small
transient at a low number of function evaluations (less than 1 · 107), not visible
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Fig. 9. E�ect of the variation of the linear growth coe�cient m and evaporation ρ at
4 · 107 function evaluations. In a) Global is the global Pareto front obtained from all
the runs of the D and D&B algorithms (40) as in Fig. 4, D&B indicates an example of
a Pareto front found during a run of the D&B algorithm with classical settings, as in
Tab. 2, and D&B increasing m indicates an example of a Pareto front found during a
run of the D&B algorithm where m = 5 ·10−3 and ρ = 10−5 . In b), Global is the global
Pareto front as above, while Global D&B increasing m indicate the global Pareto fronts
obtained from all the runs (20) of the D&B algorithms with m = 5 ·10−3 and ρ = 10−4

and Global, D&B indicate the global Pareto fronts obtained from all the runs (20) of
the D&B algorithms with classical settings.

in Fig. 7, where the unidirectional algorithm performs better than the multi-
directional (although the performance is still not signi�cant). This transient can
be appreciated in Fig. 8: it reports the value of the metrics in Eqs. (11)-(12) for
the D and D&B algorithms at 5 · 106 and 4 · 107 function evaluations. From the
�gure it is evident that D performs better at low function evaluations, but their
increment is not able to improve its performance signi�cantly, as for D&B. This
behaviour is similar to that found in [14].
Fig. 9 shows the e�ect of increasing the linear growth coe�cient to m = 5 · 10−3

and evaporation parameter to ρ = 10−5. This variation should increase the rate
of veins' expansion with time and limit the e�ect of contraction. From Fig. 9
one can argue that increasing the rate of veins' expansion is a bad choice: the
algorithm tends to converge very rapidly to a set of solutions and the exploration
is not e�cient as with lower rate of expansion.

The results obtained by applying the Physarum algorithm to the three afore-
mentioned test cases are quite interesting and prove the initial assumption that



building decision sequences in two directions and adding a matching ability is an
advantageous choice if compared with the choice of building decision sequences
in only one direction in the solution of multi-objective discrete decision making
problems. The two Physarum can evaluate each step of the decision sequence
from two directions and create joint paths: this forward and backward decision
making process improves the performance of the algorithm.

A comparison among the proposed algorithm and other bio-inspired ACO-
style algorithms is not reported in this paper and will be the subject of the
future work. Recently [13] provided an excellent comparison of the performance
of multi-objective ACO algorithms and of SPEA2 and NSGA-II, applied to a
benchmark of TSP problems, including KroAB100. In [13] the higher perfor-
mance of the ACO algorithms if compared to NSGA-II and SPEA2 is shown. A
�rst visual analysis of the Pareto Front obtained by the Physarum algorithm and
the best multi-objective ACO algorithms in [13] indicates that the Physarum is
able to �nd very quickly the centre of the front while there is a di�culty in �nd-
ing the tails. This can be explained by the fact that a single structure is used
(see Sect. 4.1).

4.1 Conclusion

This paper proposed an innovative multi-objective multi-directional incremental
modi�ed Physarum solver for multi-objective discrete decision making prob-
lems. The algorithm showed the ability to solve multi-objective problems in
combinatorial optimisation, i.e. symmetric traveling salesman and vehicle rout-
ing problems, that were selected as representative examples of multi-objective
reversible decision making problems. Simulations on selected test cases proved
that a multi-directional approach with matching ability performs better than a
unidirectional one when applied to small scale multi-objective reversible discrete
decision making problems. This result is in line with the results showed in [14]
for single-objective discrete decision making using a multi-directional modi�ed
Physarum algorithm. The multi-directional decision making process enhances
the performance of the multi-objective solver: this gain is up to 50% (based on
the indexes of performance proposed in Sect. 3.1) for the VRP test case.
It should be noted that, as introduced in Sect. 2.2, the strategy of using a single
structure (in this case the �ux), where the index of dominance Iij is the param-
eter from which the Physarum draws knowledge on the decision space, is new. It
has the advantage of being very easy to implement and it can be used when the
number of objectives is high, as in many real-world problems. The disadvantage
is that the proposed approach tends to concentrate the virtual exploring agents
in the centre of the Pareto front, excluding the tails. On the other hand, the use
of multiple structures, one for each objective, was well described and studied in
[13]: it has the advantage of being able to expand the tails of the Pareto front,
but an increase in the number of objectives would lead to the introduction of
more structures, resulting in computational cost and complexity. However, the



disadvantage of using a single structure as proposed in this paper, could be over-
come by adding sub-populations of agents that consider only one objective. This
will be further studied in the future, although �rst results are encouraging.
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