Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Confidence intervals for reliability growth models with small sample sizes

Quigley, J.L. and Walls, L.A. (2003) Confidence intervals for reliability growth models with small sample sizes. IEEE Transactions on Reliability, 52 (2). pp. 257-262. ISSN 0018-9529

[img]
Preview
PDF (CI for reliability growth models - March 2002)
CI_for_reliability_growth_models_March_2002.pdf - Preprint

Download (139kB) | Preview

Abstract

Fully Bayesian approaches to analysis can be overly ambitious where there exist realistic limitations on the ability of experts to provide prior distributions for all relevant parameters. This research was motivated by situations where expert judgement exists to support the development of prior distributions describing the number of faults potentially inherent within a design but could not support useful descriptions of the rate at which they would be detected during a reliability-growth test. This paper develops inference properties for a reliability-growth model. The approach assumes a prior distribution for the ultimate number of faults that would be exposed if testing were to continue ad infinitum, but estimates the parameters of the intensity function empirically. A fixed-point iteration procedure to obtain the maximum likelihood estimate is investigated for bias and conditions of existence. The main purpose of this model is to support inference in situations where failure data are few. A procedure for providing statistical confidence intervals is investigated and shown to be suitable for small sample sizes. An application of these techniques is illustrated by an example.