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Abstract 

Often, the duration of a reliability growth development test is specified in advance 

and the decision to terminate or continue testing is conducted at discrete time 

intervals.  These features are normally not captured by reliability growth models.  

This paper adapts a standard reliability growth model to determine the optimal time 

for which to plan to terminate testing.  The underlying stochastic process is developed 

from an Order Statistic argument with Bayesian inference used to estimate the number 

of faults within the design and classical inference procedures used to assess the rate of 

fault detection. Inference procedures within this framework are explored where it is 

shown the Maximum Likelihood Estimators possess a small bias and converges to the 

Minimum Variance Unbiased Estimator after few tests for designs with moderate 

number of faults.  It is shown that the Likelihood function can be bimodal when there 

is conflict between the observed rate of fault detection and the prior distribution 

describing the number of faults in the design.  An illustrative example is provided. 
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1. Introduction 

The aim of a reliability growth program is to improve the reliability of an item 

through the identification of design weaknesses and subsequent re-design. Typically, 

this is achieved through Test Analyze And Fix (TAAF) programs, whereby an item is 

placed on test for a period of time to expose weaknesses.  Through such testing, faults 

are exposed, corrective actions implemented and the reliability of the item is 

improved
1,2

.  The data generated from such a program will be periodically analyzed to 

determine whether the test should continue or terminate.  

Reliability growth tests are costly in terms of time and resources required, 

which results in much scepticism as to their benefits in comparison to their costs.  

Despite this, due to the risk adverse approach to reliability, growth testing continues 

to be widely used (see Hobbs
2
).  Many reliability growth models exist to support 

decision-making, see Jewell
3
, Xie

4
, Ansell et al

5
 for a review and critical appraisal.  

These models aim to provide information about the effectiveness of testing for 

improving reliability by measuring changes in the observed rate of failure.  Inference 

procedures for these models that follow a strictly classical statistical paradigm require 

more data than is often available, while Bayesian approaches often require prior 

distributions on parameters that are too abstract to be meaningful to practitioners
6
.   

The Modified IBM Model
7
 (IEC 61164)

 
overcomes the aforementioned 

criticisms through combining engineering judgement about the inherent concerns with 

the design to be tested with observed failures on test.  It makes use of a register of 

potential design weaknesses to formulate a prior distribution describing the number of 

faults within the design.  Processes used to capture such beliefs include FMEA
8
, 

HAZOP
9
 and elicitation of engineering judgment

6
.   The model is a continuous time 

reliability growth model, where the rate of fault detection is estimated classically.  

The model was developed with the primary aim of supporting inference on failure 
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mode detection.  Notwithstanding, inference regarding the number of faults within a 

design will support in-service operational performance predictions.   

In this paper, we are concerned with the situation where test reviews are 

conducted periodically, say weekly or monthly, to decide whether testing should 

continue or be terminated.  Moreover the test data used to support the decision is a 

record of the number of faults detected between each review.  There exist a number of 

discrete reliability growth models that could describe this situation, however, many of 

the classical models have been criticized for not having rigorous statistical inference 

procedures and the Bayesian models have been criticized for not making use of 

specific knowledge of faults
10

.   

We consider discretizing the Modified IBM model.  This results in a model 

that is equivalent to the Generalized Binomial Software Reliability Growth Model 

when the number of initial faults within the design are described with a Poisson prior 

distribution as developed by Dohi et al
11

.  In their paper, the authors evaluated the 

estimation properties of the Maximum Likelihood Estimators (MLE) of both the mean 

of the prior distribution and the probability of fault detection parameter.  Their 

evaluation was based on an empirical study and showed that the MLE was not always 

the best procedure and that the quality of the estimator did not always improve with 

more data.  We consider the mean of the prior to be provided by a calibrated expert 

and show through a simulation study that the MLE converges quickly to the 

Minimum Variance Unbiased Estimator (MVUE) for situations were there is 

moderate number of faults.  Moreover we show that that Likelihood function can be 

temporarily bimodal, which can explain the deterioration of the quality of the MLE 

observed in the work by Dohi et al
11

.  
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Section two describes how the modified IBM model was adapted from a 

continuous reliability growth model to a discrete one.  Moreover, the likelihood 

function is constructed where point and interval estimate procedures are derived.    

Section three describes an investigation into the quality of the Maximum 

Likelihood Estimate (MLE) for this model for bias and variability.  Section four 

embeds the model with a cost model to assess the optimal number of tests for which 

to plan.  Section five is an illustrative example of using the model to plan for an 

optimal number of tests and how to update this in light of data generated from the 

tests.   

    

2. Description of Discrete Modified IBM RG Model Assumptions 

2.1 Discussion of Modeling Assumptions 

It is assumed that an item starts the development program test with an unknown 

number of faults, say N.  The accumulated time until faults can be detected is assumed 

independent and identically distributed.  Moreover, it is assumed that the time to 

realize a particular fault is exponentially distributed.  These modeling assumptions are 

consistent with earlier work such as (Rosner
12

, Jelenski and Moranda
13

, Goel and 

Okumoto
14

). 

At fixed intervals, known apriori, the item on test is removed and investigated 

for faults.  We will refer to each interval as a test and as such we consider the 

development program to consist of a sequence of identical tests.  Exact time of fault 

realization is not recorded, only that it was realized within the interval between the 

inspections.  Similar testing regimes are considered within Crow
15

 and Robinson and 

Dietrich
16,17

, with different fault realization assumptions.  We denote the conditional 

probability that a fault is detected during a particular test given it existed within the 

design at the start of the test with p.  Relating this to the assumption that the time to 
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realize a fault is Exponentially distributed with hazard rate, say  , and assuming the 

length of a test is t then 1 tp e   . 

Corrective actions are made and re-designs are assumed not to introduce other 

faults.  Much information is often gained through observing the manner in which a 

fault has been realized.  While it is optimistic to assume that the engineer has learned 

enough about the item to remove the fault without introducing additional faults, if it 

were felt that this assumption was unduly optimistic then this is easily dealt with 

through re-visiting the elicitation processes for the prior distribution, as discussed in 

Walls and Quigley
6
.       

Finally, the prior distribution describing the number of faults that exist within 

the design is assumed to be a Poisson distribution with mean .  This is consistent 

with most reliability growth models (e.g. (Cozzolino
18

, Crow
15

, Jewell
3
, Robinson and 

Dietrich
16,17

, Ebrahimi
19

, Calabrai et al
20

) as mathematically this is equivalent to 

assuming a Non-Homogeneous Poisson Process (NHPP).    

Quigley and Walls
21

 showed this modeling framework to be more appropriate 

than the Power Law framework proposed under IEC 1164
22

, for situations where prior 

knowledge of the number of faults is available. 

 

2.2 MLE for Probability of Detecting a Fault  

We consider a situation where an item has been exposed to a series of j tests.  The 

item possesses an unknown number of faults, denoted by N.  We denote the number 

of faults detected on the i
th

 test with ni.  The number of defects prior to test, i.e. N, is 

an unknown constant whose epistemic uncertainty is measured with a Poisson 

distribution with mean .  The realizations of faults on a particular test assuming they 

exist are independently and identically distributed with probability p. Finally, it is 

assumed that the corrective actions do not introduce any new faults and completely 
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remove the fault that provoked the action.  The likelihood function for this situation is 

presented in Eq. (1). 
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Eq. (1) is the product of the likelihood of the faults that have not been 

exposed, i.e. 
1

j

i
i

N n


 , avoiding exposure on j consecutive tests and the likelihood of 

the faults that were exposed being realized during specific tests.  This likelihood is 

conditional on the initial number of faults with the design, i.e. N.  The likelihood in 

Eq. (2) is obtained through evaluating the expectation of Eq. (1) with respect to N; the 

distribution for N is a Poisson distribution conditioned on being at least equal to the 

number of faults detected on the j completed tests. 

We introduce the following notation for simplicity. 
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The rationale behind the notation is to denote the total number of faults detected, i.e. 

nT, and the total exposure to test conditions experienced by those faults that have been 

realized, i.e. ne. 
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Re-expressing (n-nT) with m we obtain the following. 
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   (2) 

 

The Score function Eq. (3) is derived through differentiating the logarithm of Eq. (2) 

with respect to p. 
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Solving Eq. (3) for p provides the Maximum Likelihood Estimator (MLE) 
^

p .  

A closed form solution does not exist for 
^

p  however, through re-arranging the Score 

function we can obtain the following equation. 
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The expression for the MLE in Eq. (4) has an intuitive explanation.  The 

numerator is the total number of faults detected in j tests and the numerator is a 

measure of the expected exposure of faults to test conditions experienced by the end 

of the j
th

 test, where ne is the exposure from those faults that have been detected and 

^

1

j

j p
 
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 
is the expected contribution from those faults not yet exposed.  Note that 

the limit as the number of tests conducted approaches infinity is the ratio of the 

number of faults detected to the exposure of faults to tests. 

 

2.3 Cramer Rao Lower Bound 

The Information function for this model is obtained from taking the expectation with 

respect to the data of the negative of the derivative of the Score function. 
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We note the following two expectations that will be used to calculate the expectation 

of Eq. (5). 
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The expectation of Eq. (5) with respect to 
~
n  is: 
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Therefore, by the Cramer Rao Lower Bound
23

 the variance of an unbiased estimator 

for p must have variance at least as large as the inverse of Eq. (7). 

 

2.4 Bimodality of Likelihood 

The MLE for q can be solved through the following fixed-point iteration.   
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The MLE of p will be the convergence of the following successive iteration: 
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For the iteration to be guaranteed to converge to a unique solution we require: 
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Investigating the roots of this quadratic equation with respect to the root of Eq. (11) 

with respect to  is: 
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A necessary condition for a real solution to the radical in this equation is: 
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As  must be a positive number and both the constant and quadratic term of 

Eq. (11) are positive it follows that if there are no real roots to Eq. (11) then there will 

always be a unique solution.  Re-arranging Eq. (13) we require d to be less than 0 to 

ensure convergence to a unique solution. 
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Therefore, convergence to a unique solution must occur during the first four tests.  

The expectation of Eq. (14) is obtained through the following.   
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Figure 1 illustrates the locus of points for p and j where the expectation of Eq. (14) is 

less than 0.  We see that there is an inverse relation between the number of tests and 

the efficacy of the testing, if p is large then is requires few tests to leave the region 

where a unique solution is guaranteed.  It is worth noting that for the region where a 

unique solution is not guaranteed does not necessarily mean the Likelihood function is 

bimodal.  Moreover, as the number of tests, i.e. j, approaches infinity then condition 

Eq. (11) is met, so the condition of bimodality will be transient if it exists at all. 

INSERT FIGURE 1 

2.5 Confidence Intervals for p 

We present three methods for obtaining confidence intervals for p.  Firstly, 

conditioning on the total number of faults that have been detected only.  This 



 11 

approach makes no use of the observed rate of occurrence and as such will be 

conservative but the simplest to construct.    Secondly, confidence intervals will be 

constructed through parametric Bootstrapping.  This approach will be the most 

accurate but requires re-sampling from a Poisson process.  Thirdly, the intervals will 

be constructed through the likelihood ratio statistic.  This approach works for 

moderate size data sets and will require the solution to a non-linear implicit function.     

 

Method 1 Conservative 

We are presuming that  is provided by expert assessment and as such the 

only parameter to be estimated with the data is p.  We have assumed that faults are 

realized according to a Poisson process.  After j consecutive tests the total number of 

faults detected, i.e. 
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Poisson distribution (see Johnson et al
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Method 2 Parametric Bootstrap 

The principle underpinning a parametric Bootstrap Confidence
26

 interval is to 

estimate the parameters of the stochastic model using the data available and then use 

the model to simulate data sets, each of which is used to re-estimate the model 

parameters.  The variability observed in the re-estimated parameters is used to assess 

the level of confidence in the original MLE’s.   

We are assuming that the time until a fault is realized is Exponentially 

distributed.  However, we are modeling the test in which the faults are realized and as 

such this has a Geometric distribution.  Moreover, we are assuming that the 

realization of faults occurs independently of each other.  Furthermore, we are 

assuming that the number of faults within the design is a Poisson random variable 

with mean .  Therefore, the number of faults detected within any test, say for 

example the i
th

 test, has a Poisson distribution with mean  
1

1
i

p p


 . 

The following algorithm can be used for constructing parametric Bootstrap 

confidence intervals for this model when there have been j tests conducted. 

 

1 Estimate 
^

p from Eq. (4) 

2 For k from 1 to runs do 

3 For i from 1 to j do 

4 Simulate Nki from Poisson distribution with mean 
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5 Next i

6 Using Nki (for i from 1 to j) estimate 
^

k
p  from Eq. (4) 

7 Next j 
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The lower and upper values of 
^

k
p  (for k from 1 to runs) will provide the 

parametric Bootstrap values.  The number of runs required will vary depending on the 

variability within the model which is greater for larger values of . 

 

Method 3 Likelihood Ratio 

Likelihood ratio confidence are useful for medium size sample sizes (see Lawless
27

) 

and are derived from the fact that –2 times the natural logarithm of the relative 

likelihood function converges quickly to a 

 distribution as described in Eq. (16). 
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This expression can be solved for required confidence level to determine appropriate 

interval for p. 

 

2.6 Bayesian Updating of Number of Faults Remaining Undetected 

The prior distribution on the number of faults updates to a Poisson posterior 

distribution as the following demonstrates. 
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Changing the notation where R denotes the remaining number of faults we have the 

following. 
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   (17) 

Which is Poisson with mean  1
j

p  . 

 

3 Investigation into the Quality of 
^

p  

The investigation to assess the quality of the MLE was conducted through a 

simulation exercise using Maple version 8 software
28

.  The simulation study consisted 

of 1000 runs for each parameter combination.  For each run the number of faults were 

simulated from a Poisson distribution and for each fault a time of detection was 

simulated from the geometric distribution, where time is measured discretely to 

indicate which test in the sequence exposed the fault.  The parameters used within the 

simulation were the expected number of faults prior to starting any test, i.e. , and the 

probability that a fault will be exposed on a particular test, i.e. p.  The exercise 

considered only the first 4 sequential tests, i.e. j=1..4, p ranging from 0.1 to 0.9 and  

ranging from 5 to 20.  The choice of the range of parameter values and tests numbers 

was to focus the assessment on small sample sizes.   

The MLE for p was evaluated after each test.  The estimation procedure was 

evaluated for bias and accuracy.  These are described in the following.  

 

3.1 Bias 

We have chosen to measure bias with relative error Eq. (18). 
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^
1000

1
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i

p p

p
relativeerror 






       (18) 

We see from Figure 2 that the absolute relative error decreases as  increases across 

all simulations.  In addition the relative error is increases in absolute value for small 

values of p while for larger values is approaches 0.  Therefore, relative error is 

greatest in situations where there are few expected faults and efficacy of testing is 

poor.  Overall, the MLE performs well with respect to error, as the relative error is 

worse for small value of p then absolute error is insignificant. 

INSERT FIGURE 2 

 

3.3 Accuracy 

In order to assess the accuracy of the MLE the root of the mean square error (RMSE) 

was evaluated against the Cramer Rao Lower Bound (CRLB).   

 

21000 ^

1

1000
1

i

i

p p

ratio

I p



 
 

 





       (19) 

Figure 3 illustrates the ratio for various parameter values of p and  for the 

first four tests.  It can be seen that as increases the ratio approaches 1 and for small 

p the ratio increases as the number of tests increase; this is consistent with the results 

from the bias study.  Overall the estimator performs well.   For certain parameter 

combinations the RMSE outperformed the CRLB; this is possible due to the bias in 

the MLE, as the CRLB is a bound for unbiased estimators.  Through using the expert 

judgment to assess the number of faults likely to be in the design we are creating the 

possibility for inserting bias into the estimation procedure; although this is typically 
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compensated for by the use of both the data and the expert assessment in the estimator 

of p.   

INSERT FIGURE 3 

4. Cost Model 

We consider a situation where a prototype has been constructed and we seek to assess 

the appropriate number of consecutive tests for which to plan.  We assume we have 

conducted an elicitation exercise and as such have a Poisson distribution describing 

the number of faults within the design.  Moreover, we assume each test cost C 

payable at the start of each test and the discount rate for money is  for the period of 

one test.  Therefore the present value at project time 0 of conducting J consecutive 

tests is: 

 
1

0

1

1

JJ
i

i

e
C e C

e
















         (20) 

The expected number of faults remaining undetected following J consecutive tests is 

 1
J

p  .  If we assume that the operation time to realize a fault is independent and 

identically distributed whose distribution has Laplace Transform LT(z)  and that the 

penalty associated with realizing a fault in operation is P then the present value at 

project time 0 of the costs incurred by the faults realized in operation ca be expressed 

as the following. 

 

1

1

J

k

k

i

N n

TJ

i

e P e










 
 
 
 
  

         (21) 

We evaluate the expected value of Eq. (21) with respect to Ti and then with respect to 

N. 
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    (22) 

Taking the expected value of this function with respect to the number of faults that 

would exist within the design following J consecutive tests we obtain the following. 

   1
J

TP L p e             (23) 

Combining this with the expected test cost we have the following expression for 

Expected Total Costs, TC. 

   
1

1
1

J
J

T

e
TC C P L p e

e





 







    

     (24) 

We seek the value of J that will minimize TC.  We achieve this through differentiating 

with respect to J to obtain Eq. (25) and solving for its root to obtain Eq. (26).  A 

second derivative test will show that this is a minimum and finally we will show that 

the integer solution for J will be the integer immediately above or below Eq. (26).  

      ln 1 1
1

J
J

T

dTC e
C P L p p e

dJ e







  





      

   (25) 

We denote the root of Eq. (26) with J
*
. 

      
 

      
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ln 1
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e P L p
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P e L p
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
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  



  





 
 

    


  
   

      


    (26) 
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Second derivative of TC is presented in Eq. (27), which we will show to be positive 

for all real value of J. 

      
2 2

2

2
ln 1 1

1

J
J

T

d TC e
C P L p p e

dJ e


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


  





       

  (27) 

The following argument demonstrates that the second derivative Eq. (27) is negative 

for all real values of J.  This is achieved through the deriving the value for J where 

Eq. (27) becomes positive and showing that it is an imaginary number.    
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 
 
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  
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   
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where 1i    

This implies that J
*
 is a minimum for TC.   

Because TC is a continuous function and 
dTC

dJ
 is a monotonically increasing 

function of J then the integer solution must be the integer which is immediately 

greater than J
*
 or less than J

*
. 
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5 Illustrative Example 

Consider an item to be placed on test.  We will consider the analysis supported by the 

modeling at three different points in time; namely pre-test, after the third test and after 

10 tests. 

   

Pre-test Analysis 

The prior distribution measuring the number of faults within the item is Poisson 

distributed with a mean of 10.  Each test costs $10000 and the penalty for realizing a 

fault in service is $100 000.  The rate of interest is 5% and a test requires a month to 

complete.  Past experience has shown that the probability of fault being realized on a 

test is approximately 0.25.  Table 1 is a list of the values of the parameters used with 

the cost model Eq. (24) to obtain the optimal number of tests to conduct Eq. (26). 

 

INSERT TABLE 1 

Figure 4 illustrates the expected cost associated with conducting a number of 

different tests, and as can be confirmed with Eq. (26) the optimal number of tests to 

plan for at time 0 is 14, which an expected cost of $168 811.  It is worth noting the 

rate of change of the expected costs changes much more dramatically for tests less 

than the optimal than greater than the optimal.  Therefore, over estimating the number 

of tests may not incur excessive costs. 

INSERT FIGURE 4 

Analysis after Three Tests 

We assume that testing commenced and the project manager had planned for 14 tests.  

Therefore we expected at project time 0 that testing will be complete in 14 months.  

Table 2 contains the results of the first three tests, which were available after 3 

months. 
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INSERT TABLE 2 

Using Eq. (4) the MLE of p is 0.3, which is slightly higher than the original 

estimate.  Substituting this into Eq. (17) results in an expected number of faults 

remaining in the design of 3.4.  Using these updated estimates with the cost model Eq. 

(24) we obtain a new estimate of the optimal number of further test to conduct, 

namely 9 more tests, which will result in an expected further costs of $113 753.  

Therefore, we have lowered the expected number of tests after the data was available 

from the first three tests.   

In order to assess the level of confidence in these estimates we consider 95% 

confidence intervals for p.  Table 3a provides a comparison of the lower bounds for p 

from the three methods while Table 3b provides a comparison using the upper bounds 

for p from the three methods.  Due to the asymmetric intervals about the confidence 

level and the finite support for the parameter p, there is little different in Table 3b 

compared with Table 3b.  Comparing the figures in Table 3a, we see that while there 

is a large variation in the upper bound of recommended tests for which to plan, e.g. 

the conservative method is almost twice as many tests as the Relative Likelihood; all 

methods suggest testing should continue.  

INSERT TABLE 3 

Analysis after Ten Tests 

Seven more tests were conducted resulting in a total of ten tests.  There were two 

more faults detected after tests 3.  These occurred on test 4 and 7.  The updated MLE 

of p based on the data from all ten tests is 0.36 and the expected number of faults 

remaining undetected is 0.12.  The cost optimal number of tests is 0 based on these 

updated figures and the expected further costs assuming incurred assuming no further 

testing is conducted is $22 315.  Table 4 is a summary of the results obtained from 

using the lower bound estimate of p from the three methods.  The samples size is 
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perhaps too small for the Likelihood Ratio Statistic, as the confidence interval appears 

optimistic.  It is worth noting the sensitivity of the cost optimal number of tests in the 

lower bound, as a drop from a p of 0.142 to 0.063 results in an increase in expected 

costs by a factor of 2.36. 

INSERT TABLE 4 

6. Conclusions 

Research to-date on reliability growth modeling has focused primarily on modeling 

the rate at which improvements are made to support predictions of required test time 

to achieve target levels of reliability.  This implicitly assumes the decision-maker 

believes there is a need for testing and can identify a target level of reliability.   

Therefore, the decisions to test or not are typically made through ad hoc assessments, 

informally trading off test time today for reliability in the future.  This paper has 

attempted to formally account for the key variables that are relevant for such a 

decision when considering a potential sequence of reliability growth tests.   

A model was presented for supporting inference during a reliability growth 

program where data are discrete.  The model is a discrete development of earlier 

models.  The modeling assumptions are consistent with many reliability growth 

models.  The data necessary to operationalize the model are collected during typical 

design and development programs and therefore require little extra effort to collect.   

One shortcoming of the model is the assumption that faults are removed with 

certainty once they are discovered.  While this is a naïve assumption, a model that 

explicitly considered imperfect repairs would rely on further assumptions.  The model 

in its current form can address this shortcoming through re-assessing the number of 

engineering concerns following major re-designs. 

A second shortcoming of the model is with the requirement of explicitly 

measuring the penalty of realizing a fault in operation.  We have simply measured this 
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with one cost, however in practice this will vary depending on the type of fault that is 

revealed.  This is being considered for further developments of the modeling. 
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Table 1 

Parameter Value 

P $1 000 000 

 0.0041 

C $10 000 

P 0.25 

LT() 0.19 

 10 

J
* 

14 

Expected Minimum Costs  $168 811 

 

Table 2 Data from first three tests 

Test Number of Faults Exposed 

1 3 

2 2 

3 2 

 

Table 3a Lower Confidence Interval for p after three tests 

 Conservative 

Relative 

Likelihood 

Parametric 

Bootstrap 

J* 46 24 34 

 8.7 7.0 8.0 

Costs $577 530 $301 931 $426 196 

 

Table 3b Upper Confidence Interval for p 

 Conservative 

Relative 

Likelihood 

Parametric 

Bootstrap 

J* 0 2 1 

 0 0.4 0.1 

Costs $0   $27 817 $12 940 
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Table 4: Results from Lower Bound of p after ten tests 

 
Conservative Relative Likelihood Parametric Bootstrap 

p 0.057 0.142 0.063 

J
* 

33 12 31 

 5.6 2.2 5.4 

Costs $444 192 $180 650 $425 986 
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Figure 1: Region of guaranteed unique MLE  
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a)  = 5     

b)  = 10 

c)  = 15 

d)  = 20 

 

Figure 2  Relative Error for Tests 1 to 4 
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a)  = 5     

b)  = 10 

c)  = 15 

d)  = 20 

 

Figure 3  Ratios of Standard Deviations for p from 0.1 to 0.9 
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Figure 4  Expected total costs for various numbers of planned tests 
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