Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Optimal discrete stopping times for reliability growth tests

Quigley, J.L. (2005) Optimal discrete stopping times for reliability growth tests. International Journal of Reliability, Qualily and Safety Engineering, 12 (5). pp. 365-383. ISSN 0218-5393

[img]
Preview
PDF (QuigleyIJRQSE2005-optimal-discrete-stopping-times)
Optimal_Stopping_Time_For_RGDT_Discrete.pdf - Accepted Author Manuscript

Download (323kB) | Preview

Abstract

Often, the duration of a reliability growth development test is specified in advance and the decision to terminate or continue testing is conducted at discrete time intervals. These features are normally not captured by reliability growth models. This paper adapts a standard reliability growth model to determine the optimal time for which to plan to terminate testing. The underlying stochastic process is developed from an Order Statistic argument with Bayesian inference used to estimate the number of faults within the design and classical inference procedures used to assess the rate of fault detection. Inference procedures within this framework are explored where it is shown the Maximum Likelihood Estimators possess a small bias and converges to the Minimum Variance Unbiased Estimator after few tests for designs with moderate number of faults. It is shown that the Likelihood function can be bimodal when there is conflict between the observed rate of fault detection and the prior distribution describing the number of faults in the design. An illustrative example is provided.