Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Comparison of two models for managing reliability growth during product design

Walls, L.A. and Krasich, M. and Quigley, J.L. (2005) Comparison of two models for managing reliability growth during product design. IMA Journal of Management Mathematics, 16 (1). pp. 12-22. ISSN 1471-678X

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Relying on reliability growth testing to improve system design is neither usually effective nor efficient. Instead it is important to design in reliability. This requires models to estimate reliability growth in the design that can be used to assess whether goal reliability will be achieved within the target timescale for the design process. Many models have been developed for analysis of reliability growth on test, but there has been much less attention given to reliability growth in design. This paper describes and compares two models: one motivated by the practical engineering process; the other by extending the reasoning of statistical reliability growth modelling. Both models are referenced in the recently revised edition of international standard IEC 61164. However, there has been no reported evaluation of their properties. Therefore, this paper explores the commonalities and differences between these models through an assessment of their logic and their application to an industrial example. Recommendations are given for the use of reliability growth models to aid management of the design process and to inform product development.