Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

An ESPRIT-SAA-based detection method for broken rotor bar fault in induction motors

Xu, Boqiang and Sun, Liling and Xu, Lie and Xu, Guoyi (2012) An ESPRIT-SAA-based detection method for broken rotor bar fault in induction motors. IEEE Transactions on Energy Conversion, 27 (3). pp. 654-660. ISSN 0885-8969

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

This paper presents a novel detection method for broken rotor bar fault (BRB) in induction motors based on the estimation of signal parameters via rotational invariance technique (ESPRIT) and simulated annealing algorithm (SAA). The performance of ESPRIT is tested with the simulated stator current signal of an induction motor with BRB. It shows that even with short-time measurement data, the technique is capable of correctly identifying the frequencies of the BRB characteristic components but with a low accuracy on the amplitudes and initial phases of those components. The SAA is then used to determine their amplitudes and initial phases and shows satisfactory results. Finally, experiments on a 3-kW, 380-V, 50-Hz induction motor are conducted to demonstrate the effectiveness of the ESPRIT-SAA-based method in detecting BRB with short-time measurement data. It proves that the proposed method is a promising choice for BRB detection in induction motors operating with small slip and fluctuant load.