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Abstract

Orbit transfer maneuvers are here considered as benchmark cases for comparing performance of different op-
timization techniques in the framework of direct methods. Two different classes of evolutionary algorithms, a
conventional genetic algorithm and an estimation of distribution method, are compared in terms of performance
indices statistically evaluated over a prescribed number of runs. At the same time, two different types of problem
representations are considered, a first one based on orbit propagation and a second one based on the solution of
Lambert’s problem for direct transfers. In this way it is possible to highlight how problem representation affects
the capabilities of the considered numerical approaches.

1. Introduction

In this paper the performance of different optimization
techniques are analyzed and compared in the frame-
work of the determination of minimum fuel – minimum
time orbit maneuvers. In particular, two different evo-
lutionary methods, namely a conventional Multi Ob-
jective Genetic Algorithm (MOGA) [1] and the Multi-
Objective Parzen-Based Estimation of Distribution Al-
gorithm (MOPED) [2], are combined with a standard
orbit propagation code and a new solution method for
Lambert problem [3], resulting in a total of four possi-
ble optimization approaches.

Optimization of orbit maneuvers has been investi-
gated for a long time, and many different approaches
have been proposed in the scientific literature. The
long standing interest for this class of problems is ap-
parent, when one considers the importance of achieving
a prescribed orbit within a given time frame while min-
imizing the amount of fuel used. Any saving on fuel
required for a given (set of) maneuver(s) results into
either a longer operational life (more maneuvers can be
performed given the amount of fuel available at the be-
ginning of the mission), a higher available payload for
the same launch weight (where a higher probe weight
at the end of an interplanetary travel means more sci-
entific instruments on board), a smaller total launch
weight (which immediately results into a reduction of
launcher weight and cost), or any combination of the
above possibilities.

For this reason, reliable optimization procedures are
of paramount importance during all phases of space
mission analysis and design, from preliminary steps,
where the mission scenario can be simplified in order
to achieve a quick idea of viable solutions, to the de-
sign of the sequence of operations, where each mission
step is addressed in order to estimate as carefully as
possible operational requirements.

From the mathematical standpoint, the minimization
problem is often made more complex by engineering
constraints. In simple cases, the total mission time
and/or the transfer time must lie within prescribed
limits or a given target orbit must be reached within
tight accuracies. In more complex scenarios a certain
sequence of events must take place in either a prescribed
place or at a prescribed time, e.g. because of require-
ments on communications with the ground station. The
resulting optimization problem is often a multi–modal
one, where local minima seriously challenge the con-
vergence capability of optimization algorithms onto a
global optimal solution.

Several approaches were proposed in the past, the
major distinction being between direct and indirect
methods, where the latter class of methods, based
on the solution of optimization problems in terms of
Pontryagin principle (see, e.g., [4–6], and references
therein), will not be considered in the sequel. Direct
methods are based on the expression of the objective
function and operational constraints as a function of a
finite set of mission design variables. Minimization of
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the function is pursued starting from one or more initial
guesses until some convergence criterion is satisfied.

Direct methods based on steepest descent approaches
(such as gradient based methods or sequential–
quadratic programming) are fast and sufficiently re-
liable, from the numerical standpoint, when the op-
timization problem is well–behaved. Unfortunately,
given an initial guess, the algorithm converges onto a
local minimum lying inside the same convex basin of
attraction, so that extensive computation is necessary
to span the whole search space when a global minimum
is searched. Constraints can be enforced by either a
penalty method or by a Lagrange multipliers approach
[7], but sometimes even finding a single feasible solution
may not be a trivial task. The optimization problem
can easily become ill–conditioned because of the pres-
ence of tight or competing constraints that prevents the
algorithm from converging.

For all these reasons evolutionary algorithms (EAs)
offer an interesting alternative [8], where rather than a
purely random search or a computationally expensive
systematic search on regular grids, the evolution of a
population of candidate solutions is driven towards a
global optimum by the fitness of its individuals. The
computational effort is still considerable, but it is usu-
ally possible to span selected portions of the search
space while leaving out of the analysis those regions
where an optimal solution is less likely to be found. As
a further advantage it is easier to tackle multi–objective
problems by means of the dominance criterion [1]. If a
steepest descent method was employed, this situation
would require the solution of several minimization pro-
cesses of a weighted combination of the considered merit
functions for different values of the weights.

Evolutionary algorithms include a very wide range
of numerical procedures, that range from genetic algo-
rithms (GAs) [9] to evolutionary strategies (ESs) [10]
and differential evolution (DE) [11]. They are a pow-
erful global optimization method, and, although con-
vergence to a global optimum is only guaranteed in a
weak probabilistic sense, they are well suited for a wide
range of both combinatorial and continuous problems.

Surprisingly enough, a systematic comparison of dif-
ferent optimization techniques has been seldom consid-
ered in the literature, in spite of the fact that differ-
ent approaches may achieve different performance de-
pending on the considered problem. Although some
works proposed a comparison between pairs of algo-
rithms over some specific problem, [12,13], a first at-
tempt to identify those global optimization algorithms
that outperform all others over different classes of orbit
transfer problems (namely two–impulse transfers, low–
thrust transfer and low–energy transfers in the frame-
work of the restricted three–body problem) was devel-
oped by Di Lizia et al. [14], demonstrating that differ-

ential evolution methods perform particularly well on
most of the problems, compared to other algorithms.
More recently, Vasile et al. [15] proposed some perfor-
mance metrics for comparing global optimization meth-
ods, discussing the actual significance of the considered
performance indexes and proposing some criteria to
evaluate the actual usefulness of each algorithm. They
addressed specifically black–box problems in space tra-
jectory design, focusing their attention on stochastic
based approaches.

As a matter of fact, there are different (and often
competing) metrics that must be considered when com-
paring the performance of optimization algorithms, es-
pecially when dealing with evolutionary methods (num-
ber of function evaluations, accuracy of the solution,
capability of converging onto the global optimum, re-
peatability of the solution, and so on), so that it is often
not trivial to identify the “best” algorithm in every re-
spect. Moreover, together with the type of orbit trans-
fer and the class of optimization method employed, the
representation of the orbital problem may play a role
in the capabilities demonstrated by an optimization al-
gorithm, because of the characteristics of the resulting
search space and its functional relation with the objec-
tive function(s).

The scope of this paper is twofold: together with
a contribution to the discussion on suitable metrics
for the comparison of optimization approaches in the
framework of orbit maneuvers and how to combine
them into a comparison criterion, the effects of prob-
lem representation on the obtained results is also con-
sidered, in order to analyze if and how this latter
aspect affects the performance of optimization algo-
rithms. Rather than spanning all the possible situ-
ations and types of orbit transfers, only direct two–
and three–impulse transfers will be considered as test
benchmarks for the considered classes of EAs: a stan-
dard GA, the nowadays classic Non–Dominated Sorting
Genetic Algorithm–II (NSGA–II) [16], where the evo-
lution is driven by stochastic operators that mimic the
natural process of selection, mating and mutation, and
the MOPED algorithm, where a probabilistic approach
is employed by randomly generating a population from
the reconstruction of a probability density function ob-
tained from the evaluation of the fitness of individuals
from the previous generation. For all the considered
applications, the optimization is achieved in the frame-
work of multi–objective problems, where Pareto fronts
in the minimum time – minimum fuel plane are traced.

The metrics used for evaluating algorithm perfor-
mance are based on the capabilities demonstrated by
the four considered optimization approaches over sev-
eral runs for each one of the considered cases, as already
pointed out in [15], where single–objective optimiza-
tions were considered. As a matter of fact, repeatability
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of the results is one of the most important aspects, when
dealing with stochastic methods. This means that the
computation effort for a reliable evaluation can become
overwhelming, when multi–objective problems are con-
sidered, the solution of which is not a single optimal so-
lution but a whole population spread along the Pareto
front. Since it is not possible to perform an infinite
number of runs for each case, it would be important
to estimate the error on the indexes computed for a
limited number of tests, which can be very low, de-
pending on the available computational resources. In
the framework of this preliminary analysis, only 20 runs
for each case were performed, and results are analyzed
on the basis of the confidence level. A more detailed
statistical analysis of the actual properties of the index
distributions will be considered as the next step of this
research. For the same reason the analysis was limited
to relatively simple orbit transfer cases.

The two optimization algorithms are briefly pre-
sented in the next Section of the paper. More details
can be found in [16], [2] and [12]. In Section 3, after pre-
senting problem geometry, objectives and constraints,
two different orbit transfer parameterizations are con-
sidered. The first one is based on the use of velocity
increment components as optimization variables, where
the f -g method based on Lagrangian coefficients [17] is
employed for propagating the orbits along coasting arcs
between thrust impulses, thus solving a shooting prob-
lem. In the second case the transfer orbit is determined
by means of the solution of the Lambert problem [17,3],
where the considered initial and final positions repre-
sent the optimization variables. Then, a discussion on
possible metrics for evaluating algorithm performance
is reported in Section 4.

In Section 5 a first set of results deals with a very sim-
ple problem, that is, the coplanar transfer between cir-
cular orbits, the minimum–fuel solution of which is the
well–known Hohmann transfer. This is done in order
to compare the obtained results with those presented
in the available literature [12,18–20]. A second simple
example, namely the direct transfer between coplanar
generic elliptical orbits, allows for a visualization of the
comparison because of the small dimension of the search
space. In this way it is possible to refine the definition
of the metrics for the evaluation of the performance of
different optimization algorithm with respect to ana-
lytically determined results. Two more complex prob-
lems are finally considered, with wider search spaces:
a three impulse transfer [19,20] and the simultaneous
transfer of two spacecraft from the same Low Earth
Orbit (LEO) to different positions on the geostationary
orbit (GEO) [12]. A Section of Conclusions ends the
paper.

2. Evolutionary Optimization methods

For this work two multi-objective optimization algo-
rithm are used. The first is a standard Genetic
Algorithm (GA), the NonDominated Sorting Genetic
Algorithm-II (NSGA-II), which still represents one of
the best multi-objective GA (MOGA) in the literature.
The second one is an Evolutionary Algorithm (EA)
which belongs to the sub-class of Estimation of Distri-
bution Algorithms (EDAs). A brief description of both
algorithms is here presented, pointing out similarities
and main differences, in order to allow the reader to
better understand the analysis of the reported results.

2.1 Non–Dominated Sorting Genetic Algorithm–II

(NSGA-II)

In the NSGA-II the dominance depth is used to classify
the population. A crowding parameter is also deter-
mined in order to rank the individuals inside each class
of dominance. For each element of a class, the crowd-
ing parameter is obtained as the sum of the difference
of the cost functions of the nearest elements in the cost
function space, divided by the range spanned by the
population with respect to each objective function. In-
side each class, the individuals with the higher value
of the crowding parameter obtain a better rank than
those with a lower one, forcing to explore the Pareto
front.

The unconstrained version of the algorithm can be
briefly described as follows. Initially, a random parent
population P0 is created. The population is sorted by
means of the non-domination criterion, whereas each
individual is assigned a fitness parameter equal to its
non–domination level. A fitness value equal to 1 (best
cases) is assigned to the non–dominated individuals,
that form the first layer. Those individuals dominated
only by members of the first layer form the second one
and are assigned a fitness value of 2, and so on. In gen-
eral, for dominated individuals, the fitness is given by
the number of dominating layers plus 1 and minimiza-
tion of fitness index is pursued by the algorithm.

Binary tournament selection, recombination, and
mutation operators [16] are used to create a child pop-
ulation Q0 of size Nind for the initial generation. Given
a parent and a child generation, indicated by the sub-
script t ≥ 0, the procedure is based upon generation
of a combined population Rt = Pt ⊕Qt of size 2Nind.
Then, Rt is sorted according to the non–domination cri-
terion. The new parent population Pt+1 of size Nind is
formed by first sorting the members of the last front ac-
cording to the crowding comparison operator and then
picking up the first Nind individuals that form Pt+1.
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The new parent population can now be used for se-
lection, crossover and mutation to create a new child
population Qt+1 of size Nind and iterate the process.

In this work the real-coded, constrained version (sim-
ulated binary crossover, SBX, and polynomial muta-
tion) has been used. Constraints were handled accord-
ing to the constraint-domination principle [16], which
discriminates between unfeasible and feasible solution
during the non–dominated sorting procedure. The defi-
nition of constrained–domination is: a solution i is said
to constrained–dominate a solution j, if (a) solution i
is feasible and solution j is unfeasible; or (b) solution i
and j are both unfeasible, but solution i is closer to the
constraint boundary; or (c) if both solutions are fea-
sible but i dominates j with respect to the objectives
functions.

The parameters to be set are: size of the population,
Nind, crossover probability, pc, mutation probability,
pm, and distribution indexes for crossover and muta-
tion, ηc and ηm, respectively.

2.2 Multi-Objective Parzen-Based Estimation

of Distribution Algorithm (MOPED)

The MOPED algorithm is a multi-objective optimiza-
tion algorithm for continuous problems that uses the
Parzen method to build a probabilistic representation
of Pareto solutions, with multivariate dependencies
among variables. The Parzen method [4] pursues a
non-parametric approach to kernel density estimation
and it gives rise to an estimator that converges every-
where to the true Probability Density Function (PDF)
in the mean square sense. Should the true PDF be
uniformly continuous, the Parzen estimator can also be
made uniformly consistent. In short, the method allo-
cates exactly Nind identical kernels, each one centered
on a different element of the sample.

Similarly to what was done in [21] for multi-objective
Bayesian Optimization Algorithm (moBOA), some
techniques of NSGA-II are used to classify promising
solutions in the objective space, while new individu-
als are obtained by sampling from the Parzen model.
NSGA-II was identified as a promising base for the algo-
rithm mainly because of its intuitive simplicity coupled
with brilliant results on many problems. The major
differences between MOPED and NSGA-II, due to the
classification and search techniques, are recalled in the
sequel.

2.2.1 Classification and Fitness evaluation

The individuals of the population are classified in a way
that favors the most isolated individuals in the objec-
tive function space, in the first sub-class (highest dom-
inance) of the first class (best suited with respect to
problem constraints).

If the problem is characterized by m constraints
ci(x), i = 1, 2, ..., m, such that cj(x) = 0 indicates that
the j–th constraint is satisfied, the first step in the eval-
uation of the fitness parameter is the determination of
the degree of compatibility of each individual with the
constraints. The compatibility, indicated by the sym-
bol cp, is measured as the weighted sum of unsatisfied
constraint. Once the value of cp is evaluated for all the
individuals, the population is distributed over a prede-
termined number of classes, 1+Ncl. The Nbest individ-
uals that satisfy all the constraints, such that cp = 0,
are in the first class. The remainder of the population
is divided in the other groups, each one containing an
approximately equal number of individuals, given by
round(Nind − Nbest)/Ncl.

The second class is formed by those individuals with
the lower values of the constraint parameter and the
last one by those with the highest values. For each
class, individuals are ranked in terms of dominance cri-
terion and crowding distance in the objective function
space, using the NSGA-II techniques. After ranking
all the individuals of the population, from the best to
the worst one, depending on their belonging to a given
class and dominance level and the value of their crowd-
ing parameter, a fitness value f linearly varying from
2 − α (best individual of the entire population) to α
(worst individual), with α ∈ [0; 1), is assigned to each
individual. This fitness value determines the weighting
of the kernel for sampling the individuals of the next
generation. As an example, for α = 0, the best so-
lution (f = 2) provides a kernel with twice as much
possibilities of generating new individuals for the next
generation than the central one, placed at half of the
classification (for a corresponding value of f = 1), while
the kernel for the worst one (f = 0) is prevented from
generating new individuals. Higher values of α are usu-
ally employed for allowing sampling of regions of the
search space far from the current best solutions.

2.2.2 Building the model and sampling

As briefly outlined in the previous section, a probabilis-
tic model of the promising search space portion is built
on the basis of the information given by Nind individ-
uals of the current population, by means of the Parzen
method. On the basis of this model, τNind new individ-
uals, with τ ≥ 1 are sampled. The variance associated
to each kernel depends on (i) the distribution of the
individuals in the search space and (ii) on the fitness
value associated to the pertinent individual, so as to fa-
vor sampling in the neighborhood of the most promising
solutions. For generic processes it can be useful to al-
ternatively adopt different kernels from a generation to
the other, in order to improve the exploration of the
search space.
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Figure 1: Geometry of the orbit transfer

The parameters to be set for the MOPED algorithm
are: size of the population, Nind, number of constraint
classes, Ncl, the fitness coefficient, α, the sampling pro-
portion, τ .

3. Problem Statement

3.1 Geometry, Objectives and Constraints

The geometry of a generic two–impulse coplanar orbit
transfer is depicted in Fig. 1. Both the initial and
the target orbits are defined by means of their orbital
elements, indicated by the subscript I and F , respec-
tively. Problem geometry is defined by 6 quantities
only, namely semi–major axis, aI and aF , eccentricity,
eI and eF , angle between the periapsis, ∆ω, and initial
spacecraft position on the initial orbit, θσ0

. Assuming
the periapsis of the initial orbit as reference for angles,
the argument of the periapsis for the initial and target
orbits are ωI = 0 an ωF = ∆ω, respectively.

The transfer is accomplished by means of two im-
pulses, ∆~v1 and ∆~v2, identified by their magnitude
∆v = ||∆~v|| and angle with respect to the tangential
direction, φ. The first impulse at time t1 = tW (where
tW indicates the waiting time on the initial orbit) in-
jects the spacecraft on the transfer orbit (thick line in
Fig. 1); the second one at time t2 = tF = t1+tT (where
tT is the transfer time) injects the spacecraft on the tar-
get orbit and completes the prescribed maneuver. The
parameters of the transfer orbit will be identified by the
subscript T .

If the initial orbit is circular, its periapsis is not de-
fined and the periapsis of the target orbit is assumed as
reference for the anomalies. If both orbits are circular,
as for the Hohman transfer case, the problem is sym-
metric and the spacecraft position at injection time has

no influence on the transfer, so that t1 = 0 and θσ0
= 0

are assumed without loss of generality.
In all the considered cases, one of the objective func-

tions is the total velocity increment, namely

∆vtot = ||∆~v1|| + ||∆~v2||

The total transfer time, given by the sum of waiting and
transfer times, tF , is included in the analysis as the sec-
ond merit function, for multi–objective optimization. If
a rendez–vous problem is dealt with, a further problem
parameter is the target position at the initial time, θτ0

.
In such a case a constraint on the final spacecraft po-
sition is represented by the condition θσ2

= θτ2
, where

the subscripts σ and τ indicate spacecraft and target,
respectively.

Other constraints are included in the analysis. In
particular, only arcs of elliptic orbits will be consid-
ered as admissible transfer trajectories, so that a first
constraint is

eT < 1

When considering planet centered orbits, the transfer
orbit must remain higher than a prescribed minimum
over the surface. Such a condition is enforced by means
of the inequality

rT,min ≥ krPI
,

where rT,min is the minimum radius along the transfer
orbit arc, while rPI

= aI(1 − eI) is the initial orbit
periapsis and k ≤ 1 is a prescribed coefficient. Note
that if the transfer orbit periapsis lies outside of the
considered transfer arc, it is rT,min = r1 ≥ rPI

, and
the constraint is not active.

3.2 Definition of benchmark cases

As stated in the Introduction, this preliminary analy-
sis is focused more on the methodological aspects of
the problem of comparing different optimization ap-
proaches, including how the orbit transfer is repre-
sented in the optimization process. For this reason,
only relatively simple cases (two–impulse transfers be-
tween circular and elliptical orbits, three–impulse trans-
fer with rendez–vous on the target orbit and a simul-
taneous two–impulse transfer for two formation–flying
satellites) are considered as test benchmarks for the
considered approaches. All the relevant data relative
to these cases are summarized in Tab. 1. These cases
are sufficient for outlining the major findings of this
preliminary study. More complex scenarios will be the
object of forthcoming research.

3.2.1 Case 1: Direct transfer between circular orbits

Case 1 deals with minimum–fuel/minimum–time direct
transfer between circular orbits. Although the optimal
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Table 1: Orbits for benchmark cases

Case No. of satellites Planet µ aI eI aF eF

1 1 Mars 4.2828 104 km3s−2 8 000 km 0 15 000 km 0
2 1 Earth 3.9860 105 km3s−2 6 721 km 0 26 610 km 0.667
3 1 Earth 3.9860 105 km3s−2 7 000 km 0 42 000 km 0
4 2 Earth 3.9860 105 km3s−2 7 000 km 0 42 000 km 0

solution can be derived analytically (the well–known
Hohmann transfer, for the minimum–fuel problem [17]),
this case was often used in the past as a preliminarily
assessment of the capabilities of EAs in the framework
of orbit maneuver optimization [18–20]. In particular,
[18] and [19] represent two of the first examples of ap-
plications of GAs to orbit maneuver problems, while
[12] offers maybe the first attempt of comparing dif-
ferent evolutionary approaches on the same problem,
although in a relatively qualitative way.

The case considered, taken from [20], is the trans-
fer between two circular Mars orbits of different radii.
As a difference with respect to the cited applications
of GAs, both fuel consumption and trasfer time are as-
sumed as objective functions to be minimized so that
the Hohmann transfer represents one of the extremes
of the Pareto front in the ∆vtot–tT plane.

Together with the constraint on the eccentricity of
the transfer orbit, e < 1, the minimum distance con-
straint is also enforced with k = 1. The geometry of
the problem is defined by the ratio of the radii, rF /rI ,
and the waiting time has no influence on the transfer
(including the optimal one), because of the radial sym-
metry of the problem.

3.2.2 Case 2: Direct transfer with rendez–vous

A slightly more complex case was considered by A. Re-
ichert in her work [18], where transfers between generic
elliptical orbits were also dealt with. Only if the el-
lipses are aligned a Hohmann–like optimal transfer is
easily determined. In the general case, the lines of the
apsides of the two orbits form a certain angle, ∆ω, and
the variation of ∆vtot as a function of the extremes of
the transfer arc is more complex.

The geometry of the problem is described by a higher
number of parameters, namely the ratio of the semi–
major axes, aF /aI , the eccentricities, eI and eF , and
the angle ∆ω. The solution depends on the initial
spacecraft positions, θσ at time t = 0, even when the
initial orbit is circular (e.g. a circular LEO), so that
eI = 0 and ∆ω is no longer defined.

In this paper, a further constraint is added on the fi-
nal position, that is, the spacecraft must reach a target
on the final orbit (rendez–vous problem). In this sce-
nario the solution depends also on the initial position
of the target, θτ at time t = 0. A further constraint

is introduced on the final position, θσ = θτ at time
t = tF ≡ t2.

The data used for Case 2 and reported in Tab. 1 are
representative of a transfer from a circular LEO to a
high eccentricity semisynchronous orbit. The transfer
depends on two parameters only, namely tW and tT .
Figure 2 represents a contour plot of ∆vtot as a func-
tion of these two parameters (white < 3 m/s, black > 15
m/s). The shaded areas represent unfeasible solutions
where constraints on eccentricity and/or minimum ra-
dius are violated. The variation of ∆vtot in the tW –tT

plane is characterized by several local minima. As a
consequence, the Pareto front in the ∆vtot–tT plane is
expected to exhibit several arcs.
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Figure 2: ∆v for Case 2.

3.2.3 Case 3: Three–impulse transfer

The third case considered in this paper is a three–
impulse transfer between circular orbits. Given the ge-
ometry of the initial and final orbits, a third impulse
is allowed during the transfer, which is thus divided
into two arcs. In such a case the solution space to be
spanned becomes wider.
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Similar cases were also analyzed in [19] and [20], al-
though for different geometries and, apparently, with
the only purpose of demonstrating the possibility of
generalizing the optimization approach to a generic n–
impulse transfer. In the present application a constraint
on the final position is considered, so that the inter-
mediate velocity increment can be used to correct the
trajectory along the path and make the rendez–vous
with the target somehow easier. Constraints on the ec-
centricity and minimum distance from the planet sur-
face are enforced for both arcs, exactly as for the two–
impulse transfer.

3.2.4 Case 4: Simultaneous transfer of 2 satellites

A final more complex application is considered, where
two formation–flying satellites, indicated by the letters
A and B are launched simultaneously from the same
position on LEO towards two prescribed longitudes on
GEO shifted by an angle ∆λ [12]. In this case the
algorithm minimizes the total ∆v required by the for-
mation, ∆vF F = ∆vtot,A + ∆vtot,B, and the maneuver
time tman, that is, the time at which the last spacecraft
achieves its prescribed position, tman = max(t2,A, t2,B).

As a matter of fact, two–impulse orbit transfers be-
tween circular orbits is considered with the constraint
that the initial position is the same for both satellites.
Also the constraints considered for Cases 2 and 3 apply
in the same form as before to both spacecraft.

3.3 Representation of Orbit Transfers

In this paragraph the functional dependencies of
merit functions and constraints with respect to the un-
knowns of the optimization problem will be expressed,
in order to highlight the differences between the two
considered representations of the orbit transfer problem
for Keplerian motion: the first one, based on a standard
orbit propagation algorithm (f -g method based on La-
grangian coefficients); the second based on the solution
of the Lambert problem.

In this latter case the required ∆v is obtained af-
ter the solution of the Lambert problem as a function
of the orbit parameters of the orbit that contains the
transfer arc, while in the first case magnitude and di-
rection of the velocity increment are among the opti-
mization variables, while the final position and transfer
time are obtained from orbit propagation. As a conse-
quence number of optimization variables (that is, the
dimension of the search space) and the representation
(or even the presence) of constraints may vary, when
describing the transfer in different terms, thus affecting
the performance of the optimization algorithm used.

3.3.1 Orbit propagation

When orbit propagation is used for determining the op-
timal two–impulse transfer, the optimization variables

are magnitude and direction of the velocity increment
of the two impulses, namely ∆v1 and φ1 for the first
impulse, and ∆v2 and φ2 for the second one (where the
angle φi is counted with respect to the local tangent to
the orbit), together with the orbital anomalies θ1 and
θ2 = θ1+∆θ of the corresponding positions. The vector
of optimization variables is thus given by

x = (θ1, ∆v1, φ1, ∆θ, ∆v2, φ2)
T ∈ R

6

A total of 5 constraints is enforced: 3 equality con-
straints on semi–major axis, aF , eccentricity, eF , and
argument of the periapsis, ωF , for the final orbit, and
two inequality constraints for the transfer orbit, that is,
eT < 1 and rmin > kaI(1 − eI).

When a transfer between circular orbits is consid-
ered (Case 1), the symmetry of the problem makes θ1

loose any influence on both the objective functions. For
this reason the variable is assumed to be zero and the
search space dimension is reduced to 5. All the other
aspects of the optimization problem remain unchanged.
A sixth constraint is added for the rendez–vous prob-
lem (Case 2), in which case the spacecraft must achieve
a prescribed position at the final time, after the sec-
ond impulse. This requires that also the position of the
target on the final orbit is propagated.

The extension to an n–impulse case (Case 3) simply
requires that more optimization variables are added and
the orbit propagation algorithm is applied n times. For
the three impulse case (Case 3) it is

x = (θ1, ∆v1, φ1, ∆θ1, ∆v2, φ2, ∆θ2, ∆v3, φ3)
T ∈ R

9

with θi+1 = θi + ∆θi.
Inequality constraints apply to both arcs, so that a total
o 4 inequality constraints need to be enforced, plus the
usual three equality ones on the final orbit.

The simultaneous two–impulse transfer of two space-
craft duplicates the number of optimization variable,
with respect to Case 2, with the only exception of the
starting point, which is common to both satellites. The
vector of optimization variables is

x = (θ1, ∆v1,A, φ1,A, ∆v1,B , φ1,B,

∆θA, ∆θB, ∆v2,A, φ2,A, ∆v2,B , φ2,B , )T ∈ R
11

and 6 equality constraints plus 4 inequality constraints
are enforced.

In all the above mentioned cases, each one of the
equality constraints on orbit parameters and spacecraft
final anomaly (rendez–vous condition) is enforced by
means of two inequality constraints in the form

aF,des − εa ≤ aF ≤ aF,des + εa

eF,des − εe ≤ eF ≤ eF,des + εe

ωF,des − εω ≤ ωF ≤ ωF,des + εω

θF,des − εθ ≤ θF ≤ θF,des + εθ

7



where εa, εe, εω, and εθ are the assumed tolerances.

3.3.2 Lambert Problem

The solution of the two–point boundary value problem
for Keplerian motion, also known as Lambert’s problem
[17], is represented by the determination of the orbit
parameters of an orbit having a specified transfer time
tdes between two prescribed positions in space, P1 and
P2. Several algorithms have been derived for solving it,
from the seminal works of prof. R.H. Battin [22] to a
recent algorithm developed by G. Avanzini (see [3] and
references therein).

Most of the methods are based on a parameterization
of the set of orbits passing trough P1 and P2 with re-
spect to some auxiliary variable. The method described
in [3] exploits a novel parametrization in terms of the
transverse eccentricity vector component et, perpendic-
ular to the direction of the chord connecting P1 and P2.
As far as the transfer time tT is a monotonic function
of et, the latter is used as the unknown for the equation
tT (et) = tdes.

It should be noted that, when a Lambert algorithm is
used for defining the geometrical properties of either a
two–impulse transfer orbit or the last trajectory arc for
the n–impulse case, the constraints on the final position
of the spacecraft at the end of the transfer are inher-
ently satisfied, and the required ∆~v’s are identified by
simple vector operations as

∆~v1 = ~v1 − ~vI

∆~v2 = ~vF − ~v2

where the initial and final velocities ~vI and ~vF are
known from the properties of the (given) initial and
final orbits, while ~v1 and ~v2 are determined from the
orbital elements of the transfer arc.

This fact greatly simplifies the structure of the feasi-
ble solution space, inasmuch as, together with the num-
ber of equality constraints, also the number of optimiza-
tion variables is reduced. This is done at the expenses
of a higher computational cost for the evaluation of a
single individual of the population of candidate solu-
tions, which requires the iterative solution of the Lam-
bert problem for the considered set of transfer param-
eters (starting and arrival positions on the initial and
final orbits and transfer time).

For Case 1 the problem is almost over–simplified, the
number of optimization variables being reduced to only
two, that is,

x = (∆θ, tT )T ∈ R
2

with θF = ∆θ. Also Case 2 can be easily cast in a form
where only two optimization variables are present,

x = (tW , tT )T ∈ R
2

If on one side, the transfer between elliptical orbits de-
pends on the waiting time on the starting orbit, the ad-
ditional rendez–vous constraint dictates the final posi-
tion at the end of the transfer, where the target position
at the final time tW +tT is easily found from the knowl-
edge of its initial position at time t = 0 by application
of an orbit propagation algorithm. As a matter of fact,
in both these first two cases, the Pareto front could be
directly traced with very simple numerical techniques.

For the three–impulse transfer (Case 3) the search
space is spanned by the vector

x = (tW , tT1
, r1, ∆θ1, tT2

)T ∈ R
5

where r1 and ∆θ1 assign the position of the interme-
diate impulse, while tT1

and tT2
are the transfer times

along the first and the second coast arc, respectively.
On the converse, the vector of optimization variables

for the simultaneous transfer of two spacecraft (Case 4)
is

x = (tW , tTA
, tTB

)T ∈ R
3.

For all the above mentioned cases, inequality con-
straints on eccentricity and minimum radius apply to
transfer orbit segments as before, but all the equality
constraints are now exactly satisfied by the problem
representation itself. Although inequality constraints
reduce the size of the admissible region in the search
space, the subset of feasible solutions has the same di-
mension of the search space. A very different situation
is encountered when orbit propagation is used for rep-
resenting the transfer. As an example, Case 4 is char-
acterized by 11 unknown and 8 constraints, resulting
in a three–dimensional subset of feasible solutions in a
11–dimensional search space.

4. Test Methodology

The optimization algorithms adopted in this work be-
long to the wide class of stochastic algorithm. These
methods are expected to converge to the global solu-
tion of the problem if the number of evaluations of the
system model Neval is sufficiently high. Equivalently,
letting Ps be the probability to find the global solution,
Ps → 1 if Neval → ∞. It is obviously unpractical to al-
low an unbounded growth of Neval, both for test cases
and for real problems, so that the common practice is
to stop the algorithm after a prescribed maximum num-
ber of evaluations of the system model, NMAX . This
means that, given a problem and an algorithm to solve
it, it is important to evaluate algorithm effectiveness
for a finite value of NMAX . Because of the stochastic
nature of the algorithms, their performance must be
considered as an aleatory variable as well, whichever
the metrics adopted to measure it.
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4.1 Comparison metrics

All the benchmark problems considered in this work are
constrained and multi-objective. Therefore the perfor-
mance of the algorithms must be measured in terms of
constraint satisfaction and approximation of the global
Pareto front.

A first index gives information about the capability
of the algorithm of finding at least one feasible solu-
tion. Given the total number of runs for the algorithm,
Nrun, the index PF S is the ratio between the number
of times the algorithm is able to find at least one fea-
sible solution, NrunF , and the total number of runs:
PF S = NrunF /Nrun.

As for the two main goals of MOEAs, that is, (i)
convergence to the true Pareto optimal front, and (ii)
distribution of the population over the whole front, it
is necessary to introduce two parameters that evaluate
both these properties. In this work, the metrics pro-
posed by M. Vasile were adopted [23]:

Mconv =
1
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Np
X
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min
j∈Mp
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Given the Mp solutions gj used to describe (or to ap-
proximate) the global Pareto front, and the Np elements
fi in the Pareto front obtained from a given run of the
optimization algorithm, Mconv is the sum over Np of the
distance of each element in the particular front consid-
ered from the closest element of the global front. This
figure of merit clearly indicates how close the obtained
front is to the global one. On the other hand, Mspr is
the sum over all the elements in the global Pareto front
of the distance of each element in the global front from
the closest one in the front obtained for the considered
run. This parameter measures how well the individuals
of the obtained front cover the whole global front.

Mconv and Mspr can assume different values for each
run. A Gaussian PDF is usually assumed for these pa-
rameters, described by mean value and variance, com-
puted by taking into account only those runs that have
at least one individual in the feasible region.

4.2 Integral approach for comparison metrics

The aggregated form briefly described above reflects
the common practice for the evaluation of performance
indexes of stochastic algorithms, but it has a signifi-
cant methodological and practical fault that needs to
be underlined, because the a priori hypothesis that the
PDFs are Gaussian is usually far from true. The ac-
tual PDF depends on a) the considered problem, b)
the algorithm and c) the value of NMAX . Its shape is

unknown and it can be multi–modal. As an example,
both multi–objective performance indexes, Mconv and
Mspr, would be 0 at convergence, for NMAX → ∞, with
a PDF represented by a Dirac function centered in zero.
For NMAX < ∞ both metrics are strictly positive by
definition, so that, for very high values of NMAX one
expects a PDF more similar to an exponential than a
Gaussian one. Only for relatively low values of NMAX

the values of Mconv and Mspr will be distributed on
both sides of the most likely one.

For this reason, in the absence of any actual knowl-
edge about the true shape of the PDF, a practical and
useful, yet correct and rigorous approach is based on
extracting from the test results the success probabil-
ity, which is the probability that the considered in-
dex is beyond a predefined threshold. As an exam-
ple, PS(Mconv < θconv) is the probability that the
index Mconv achieves a value less than the threshold
θconv. These probabilities can be evaluated over a lim-
ited number of runs with a better confidence then the
PDF could be, so that it provides a more reliable merit
function for optimization algorithm capabilities.

At this point, two indexes of success, PF S,Mconv and
PF S,Mspr , can be derived by combining constraint sat-
isfaction probability and multi–objective requirements,
that is:

PF S,Mconv = PF SPS(Mconv < θconv) (3)

PF S,Mspr = PF SPS(Mspr < θspr) (4)

The first one is the product of the probability to find
at least one solution in the feasible region times the
probability that the index Mconv has a value less than
the threshold θconv. If one assumes that Mconv = ∞
for those runs which are not able to find feasible so-
lutions, PF S,Mconv is equivalent to PS(Mconv < θconv)
computed on the basis of the whole set of runs.

4.3 Critical aspects and practical solutions

In order to compute the two multi-objective metrics,
Mconv and Mspr, the knowledge of the global front is
required, either in analytic form or as a large set of
global solutions. At the moment, such an information
is not available, but it is possible to extract the best
approximation of the global front from the whole set of
available solutions, to be used as the reference global
front.

Another important aspect that needs to be pointed
out is that the statistical properties of the success in-
dexes, defined in the form described above, can be rep-
resented by means of a binomial PDF independently of
the number of function evaluations, the problem for-
mulation and the optimization algorithm. As a major
consequence of this property, brilliantly underlined by
Vasile and his co–workers, [15], the test can be designed
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knowing a priori the relation between the number of
runs, Nrun, and the error on the estimation of the suc-
cess index.

A commonly adopted starting point for sizing the
sample of a binomial distribution is to assume that both
the normal approximation for the sample proportion p
of successes (i.e. p ∼ N{θp, θp(1 − θp)/n}, where θp

is the unknown true proportion of successes) and the
requirement that Pr[|p − θp| ≤ derr|θp] are at least
equal to 1 − αp [24]. This leads to expression:

Nrun ≥ θp(1 − θp)χ
2
(1),αp

/d2
err (5)

that can be approximated conservatively with

Nrun ≥ 0.25χ2
(1),αp

/d2
err (6)

valid for θp = 0.5.
In the framework of this preliminary test campaign,

relatively modest computational resources were avail-
able, so that the above relations could not be used
to size Nrun on the basis of an acceptable error level.
Rather, the same relations were used in order to es-
timate the error on the evaluation of the considered
probability for Nrun = 20. From Eq. 6 one has:

derr ≥
q

0.25χ2
(1),αp

/Nrun (7)

For Nrun = 20, with a 95% confidence level (αp =
0.05), the measured success index can be affected by an
error as high as derr & 0.15.

5. Results

In order to allow for a fair and easy comparison be-
tween the two optimization codes over the considered
cases, code parameters were kept fixed, whenever pos-
sible. For the NSGA-II code, the following values were
adopted: crossover probability, pc = 0.9; mutation
probability, pm = 1/dim (where dim is the dimension
of the search space); distribution indexes for crossover
and mutation, ηc = 5 and ηm = 5, respectively (val-
ues that should allow a good exploration of the search
space).

For the MOPED code the parameters were: number
of constraint classes, Ncl = 10%Nind; fitness coefficient,
α = 0.5; sampling proportion, τ = 1.

For both codes, Nind and the maximum number of
generations were set for each case on the basis of the
expected degree of difficulty.

All the results in terms of performance indexes are
listed in Table 2. Each particular case will be de-
tailed and commented separately in the next subsec-
tions. Only at the end, general properties and specifi-
cations will be discussed.

5.1 Transfer between circular orbits

The first and easiest test case was approached by Lam-
bert method using Nind = 100 and NgenMAX = 20, for
a total of 2000 evaluations of the system model, with
following parameters and related bounds: x1 is the ∆θ
of the transfer arc (x1 ∈ [0.1, 2π − 0.1]), x2 is transfer
time (x2 ∈ [0.05, TF ], where TF is the period of the des-
tination orbit). The minimum-fuel solution obtained by
Lambert approach is shown in Figure 3.

Figure 3: Min–fuel transfer manoeuvre for Case 1.
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Figure 4: Best reference Pareto fronts for Case 1.

As for all the other test cases by Lambert method,
both the algorithms always successfully find the feasi-
ble region, PF S = 1, and in this particular case they
apparently have the same effectiveness in covering the
whole front. On the other hand, there is an appre-
ciable difference in terms of convergence onto the best
front. The whole reference front, reported in Fig. 4,
is better approximated over its whole extension by the
solution reported in Fig. 5, where Mspr ≈ 1, then in
Fig. 6, where the reported solution is characterized by
Mspr > 2.

The orbit transfer is more complex to solve, when
the propagation method is adopted. Due to the ad-
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Table 2: Performance indexes - For all of the cases: Nrun = 20, θconv = 0.35, θspr = 1.25

M̄conv σ2(Mconv) M̄spr σ2(Mspr) PF S PS,Mconv
PS,Mspr

PF S,Mconv
PF S,Mspr

Case 1.L

MOPED 0.245 0.0023 1.62 0.122 1 1 0.15 1 0.15
NSGA2 0.378 0.0073 1.48 0.067 1 0.35 0.2 0.35 0.2
Case 1.P

MOPED 0.19 0.02 6.2 2.11 0.95 0.89 0 0.85 0
NSGA2 61.41 9996.34 88.61 10595.66 0.2 0.25 0 0.05 0

Case 2.L

MOPED 0.07 0 5.8 15.21 1 1 0 1 0
NSGA2 0.09 0 2.04 0.14 1 1 0 1 0
Case 2.P

MOPED 0.3 0.01 0.58 0.06 1 0.8 1 0.8 1
NSGA2 110.5 11316.4 493.56 117304.3 0.55 0 0 0 0

Case 3.L

MOPED 20.52 165.24 5.553 2.451 1 0 0 0 0
NSGA2 4.68 27.62 4.88 27.36 1 0.2 0.25 0.2 0.25
Case 3.P

MOPED 42.84 5048.54 115.13 20814.72 0.65 0.15 0 0.1 0
NSGA2 18.35 465.67 61.92 2632.77 0.65 0.31 0 0.2 0

Case 4.L

MOPED 0.359 0.0026 1.19 0.00943 1 0.45 0.75 0.45 0.75
NSGA2 0.443 0.0035 1.21 0.046 1 0.05 0.65 0.05 0.65
Case 4.P

MOPED 5.68 62.27 34.61 735.7 0.8 0.5 0 0.4 0
NSGA2 NaN NaN NaN NaN 0 0 0 0 0
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Figure 5: Run with Mspr = 1.066 < θspr = 1.25 for
Case 1. lambert

ditional constraints (in this case εa = 20 km, εe =
0.005, and εω = 0.02 rad), it was approached with
Nind = 200 and NgenMAX = 400, for a total of 80000
evaluations of the system model. The bounds on the
search variables were as follows: magnitude of the
first impulse: x1 ∈ [0.02, 1]; direction of the first im-
pulse: x2 ∈ [−0.2π, 0.2π]; position of the second im-
pulse: x3 ∈ [0.2π, 2π]; magnitude of the second im-
pulse: x4 ∈ [0.02, 1]; direction of the second impulse:
x5 ∈ [−0.6π, 0.6π].
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Figure 6: Run with Mspr = 2.128 > θspr = 1.25 for
Case 1. lambert

The difference between the performance of the algo-
rithms is evident, both in terms of PF S and PS,Mconv .
The gap is higher than the expected error derr on the
evaluation of the probability, as outlined at the end of
the previous section (see par. 4,3), so that it is possible
to affirm with good confidence that, for this problem,
the adopted version of the MOPED performs definitely
better than the adopted NSGA-II code. On the other
hand, both methods proved to be unable to cover the
entire front.

11



5.2 Transfer Between Elliptical Orbits with

Rendez-vous

A first more demanding test for the considered algo-
rithms is represented by the optimization of orbit trans-
fer between elliptical orbits, when a prescribed target
on the final orbit has to be reached at the end of the
maneuver. In this case, when the Lambert formulation
is used, the algorithms where set with Nind = 100 and
NgenMAX = 20, for a total of 2000 evaluations of the
system model, with the following parameters and re-
lated bounds: waiting time (tW = x1 ∈ [0, 10.8; trans-
fer time: tT = x2 ∈ [0.03, 10.8].

Both the algorithms demonstrate to be able to con-
verge to the best front, but none of them can spread
the individuals over the whole front. In Figure 7 the
minimum-fuel solution obtained by Lambert approach
is shown.

Figure 7: Min–fuel transfer manoeuvre for Case 2.
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Figure 8: Best reference Pareto fronts for Case 2.

When the same case is modeled in terms of orbit
propagation, the resulting optimization problem proved
again to be more complex to solve. Given the additional

constraints, εa = 40 km, εe = 0.002, εθ = 0.01 rad, and
εω = 0.01 rad, Nind = 200 and NgenMAX = 600 were
used, for a total of 120000 evaluations of the system
model. The optimization parameters were bounded as
follows. Position of the first impulse: x1 ∈ [−0.2π, 14π];
magnitude of the first impulse: x2 ∈ [1.6, 4]; direction
of the first impulse: x3 ∈ [−0.2π, 0.2π]; position of the
second impulse: x4 ∈ [0.2π, 2π]; magnitude of the sec-
ond impulse: x5 ∈ [0.004, 1.6]; direction of the second
impulse: x6 ∈ [−0.6π, 0.6π].

Again for this constrained case the difference be-
tween the performance of the algorithms is evident, be-
ing much higher than the expected error derr both in
terms of PF S and PS,Mconv , but in the present case the
MOPED algorithm successfully spreads the solutions
along the front.

5.3 Three–impulse transfer

The three–impulse transfer with target on the final
orbit is one of the two more complex cases handled.
The version with the Lambert formulation, significantly
more complex than the first two cases, was approached
with Nind = 100 and NgenMAX = 300. The opti-
mization variables were: the waiting time, tW = x1 ∈
[0, 1.62); the transfer time for the first arc, tT,1 =
x2 ∈ [0.03, 21.54]); the radius of the second impulse,
r2 = x3 ∈ [7010, 105410]); the amplitude of the first
transfer arc (∆θ = x4 ∈ [0.01, 2π−0.01]); and the trans-
fer time for the second arc (tT,2 = x5 ∈ [0.03, 21.54]).

Even if NSGA-II shows in this case higher perfor-
mance indexes, that is, it is expected to exhibit better
performance than the MOPED, the difference between
the two algorithms is always less than 0.30, so that, ac-
cording to the reliability of the statistical estimate over
a small number of run, no rigorous comparison can be
derived from this test case for NSGA-II and MOPED.

In Figure 9 the minimum-fuel solution obtained by
Lambert approach is shown. It should be noted that
the considered algorithms demonstrated the capability
of autonomously recognizing those situations where a
two impulse transfer is more convenient than a three–
impulse one. For the considered transfer between cir-
cular orbits, it is rF /rI < 15.68, so that a two–impulse
Hohmann transfer represents the minimum–∆v solu-
tion. As a matter of fact, the minimum–∆v portion of
the Pareto front is made up by solutions where one of
the impulses (usually either the first or the third one) is
vanishingly small, such that the initial or the final cor-
rection is practically negligible and the required trans-
fer is achieved by two–impulses only. On the converse,
for rF /rI > 15.68 (not reported for the sake of concise-
ness), a three–impulse bielliptical transfer was correctly
identified as the optimal minimum–∆v solution.
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Figure 9: Min–fuel transfer manoeuvre for Case 3.
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Figure 10: Best reference Pareto fronts for Case 3.

When the same case is modeled by orbit propaga-
tion, the constraints are enforced with the following
tolerances: εa = 140 km, εe = 0.002, εθ = 0.01
rad, and εω = 0.01 rad, while Nind = 500 and
NgenMAX = 1200, for a total of 600000 evaluations of
the system model. The position of the first impulse was
bounded as x1 ∈ [−2π/100, 2π]); the magnitude of the
first impulse was x2 ∈ [0.6, 3], while its direction was
x3 ∈ [0, 0.2π]; the second impulse, delivered in a posi-
tion x4 ∈ [2π/100, 2π]), had magnitude x5 ∈ [0.003, 3]
and direction x6 ∈ [−0.4π, 0.4π]; the third impulse
was delivered in position x7 ∈ [2π/100, 2π], with a
magnitude equal to x8 ∈ [0.003, 3] and a direction
x9 ∈ [−0.6π, 0.6π]).

In this case the indices demonstrate comparable per-
formance, although a mild prevalence of NSGA-II algo-
rithm must be recognized. It should also be noted that
none of the algorithms covers the whole reference front,
for the considered sets of algorithm parameters.

Figure 11: Min–fuel transfer manoeuvre for Case 4.
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Figure 12: Best reference Pareto fronts for Case 4.

5.4 Simultaneous transfer of 2 satellites

Case 4 with Lambert formulation was approached with
Nind = 100 and NgenMAX = 100 and with the following
parameters: waiting time tW = x1 ∈ [0, 1.62; transfer
time for the first satellite tT,A = x2 ∈ [0.03, 21.54];
and transfer time for the second satellite (tT,B = x3 ∈
[0.03, 21.54]).

The algorithms appear equivalent in terms of both
PF S and PS,Mspr , but MOPED looks superior in terms
of PS,Mconv . In Figure 9 the minimum-fuel solution
obtained by the Lambert approach is shown.

When the case is modeled by a propagation method,
Nind = 400 and NgenMAX = 800 (for a total of 320000
evaluations of the system model) and the same con-
straints of Case 3 were enforced. The optimization
variables were bounded as follows. The position of
the first impulse for both satellites A and B is x1 ∈
[−2π/100, 2π]); the magnitude of the first impulse for
satellite A is x2 ∈ [1.5, 3]; its direction x3 ∈ [0, 0.2π]);
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the position of the second impulse for satellite A is
x4 ∈ [2π/100, 2π]; its magnitude x5 ∈ [0.003, 2.7]),
while its direction is x6 ∈ [−0.6π, 0.6π]; the magni-
tude of the first impulse for satellite B is x7 ∈ [1.5, 3],
with direction x8 ∈ [0, 0.2π]; the position of the sec-
ond impulse for satellite B is x9 ∈ [2π/100, 2π], with
a magnitude equal to x10 ∈ [0.003, 2.7] and a direction
x11 ∈ [−0.6π, 0.6π].

In this case a comparison is not possible because none
of the 20 runs of the NSGA-II provided any feasible
solution. The result is somehow unexpected and will
be investigated.

5.5 Remarks and comments

There are few comments and remarks that need to be
pointed out. First of all, it appears evident from the
tests that an approach by propagation method is not
the best choice. Compared to the the Lambert ap-
proach, propagation requires to handle a higher num-
ber of design variables and constraints and, even if the
MOPED algorithm appears capable of always reaching
the feasible region, the optimization approach becomes
extremely expensive.

Also, discrepancies between the best reference fronts
obtained by the two modeling approaches demonstrate
two major findings of this research: a) constraints, es-
pecially for more complex cases, tend to bias the search
towards a relatively limited portion of the feasible re-
gion of the search space; this means that the coverage of
the entire front in one run becomes unlikely and, since
our reference fronts are the union of relatively few runs,
they are not even complete; b) ideally, in order to find
a truly global solution of the problem, the search for
all the design variables should be allowed to vary be-
tween −∞ and ∞; this was not done, in order to avoid
regions where the model is not valid and to limit the
computational time, but in such a way it is not easy to
provide the considered approaches with exactly equiv-
alent search spaces.

A second observation concerns the unquestionable
superiority of the Lambert approach. Even if it can be
considered as demonstrated, the presented results can
only be seen as “qualitative” and “relative”, because of
the relatively small number of test runs for each case.
The aim of this work was to provide new ideas for future
extensive tests, that, based on a wider range of results,
will allow for a more correct interpretation of the data.
At present the obtained index values are affected by the
following problems:

• a low value of Nrun, in this case, influences twice
the precision of the results: a) a high value of derr

allows to distinguish between the algorithms only
when the discrepancy in terms of indexes is very
high; b) the best Pareto front is itself a product

of the runs, therefore also the confidence on the
reference front is low when Nrun is small;

• since θconv and θspr are fundamental for the deter-
mination of the merit index, a standard value for
all of the cases may not be the best choice.

Part of the future work will be aimed at standardiz-
ing the models, both in terms of variable bounds and
constraint levels (ǫa, ǫe, ǫθ and ǫω), in order to use them
as benchmarks for constrained optimization algorithms.

6. Conclusions and Future Work

An approach for comparing performance of Evolu-
tionary Optimization Algorithms has been developed
and tested over a set of 4 benchmark case, using two dif-
ferent multi–objective optimization codes: a standard
genetic algorithm and a Parzen–based estimation of dis-
tribution algorithm. Two different representation of the
orbit transfer problem were also adopted, for a total of
4 possible different optimization approaches. With re-
spect to the second aspect, modeling the transfer orbit
by solving a Lambert problem allows for a direct en-
forcement of constraints on the final position (includ-
ing rendez–vous), which greatly simplifies the solution
of the optimization problems, by reducing the number
of optimization variables at stake. At the same time,
orbit propagation still offers a good benchmark for test-
ing the capabilities of different algorithms over con-
strained problems. As for the optimization codes, the
adopted version of MOPED algorithm performs usually
better than the adopted version of NSGA-II, although
the limited number of runs available makes this state-
ment somehow questionable and the comparison only
qualitative.

In this respect, considering the proposed comparison
metrics for multi–objective optimization as representa-
tive of the actual performance of the algorithms, future
research will be addressed towards improving (i) the
evaluation of the statistical properties of the perfor-
mance indices adopted, by means of a higher number
of runs, and (ii) the standardization of the test cases,
by making the search space truly equivalent.
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