Picture of two heads

Open Access research that challenges the mind...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including those from the School of Psychological Sciences & Health - but also papers by researchers based within the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Probability density decomposition for conditionally dependent random variables modeled by Vines

Bedford, T.J. and Cooke, R. (2001) Probability density decomposition for conditionally dependent random variables modeled by Vines. Annals of Mathematics and Artificial Intelligence, 32 (1). pp. 245-268. ISSN 1012-2443

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

A vine is a new graphical model for dependent random variables. Vines generalize the Markov trees often used in modeling multivariate distributions. They differ from Markov trees and Bayesian belief nets in that the concept of conditional independence is weakened to allow for various forms of conditional dependence. A general formula for the density of a vine dependent distribution is derived. This generalizes the well-known density formula for belief nets based on the decomposition of belief nets into cliques. Furthermore, the formula allows a simple proof of the Information Decomposition Theorem for a regular vine. The problem of (conditional) sampling is discussed, and Gibbs sampling is proposed to carry out sampling from conditional vine dependent distributions. The so-called lsquocanonical vinesrsquo built on highest degree trees offer the most efficient structure for Gibbs sampling.