Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Probability density decomposition for conditionally dependent random variables modeled by Vines

Bedford, T.J. and Cooke, R. (2001) Probability density decomposition for conditionally dependent random variables modeled by Vines. Annals of Mathematics and Artificial Intelligence, 32 (1). pp. 245-268. ISSN 1012-2443

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

A vine is a new graphical model for dependent random variables. Vines generalize the Markov trees often used in modeling multivariate distributions. They differ from Markov trees and Bayesian belief nets in that the concept of conditional independence is weakened to allow for various forms of conditional dependence. A general formula for the density of a vine dependent distribution is derived. This generalizes the well-known density formula for belief nets based on the decomposition of belief nets into cliques. Furthermore, the formula allows a simple proof of the Information Decomposition Theorem for a regular vine. The problem of (conditional) sampling is discussed, and Gibbs sampling is proposed to carry out sampling from conditional vine dependent distributions. The so-called lsquocanonical vinesrsquo built on highest degree trees offer the most efficient structure for Gibbs sampling.