Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Vines - A new graphical model for dependent random variables

Bedford, T.J. and Cooke, R. (2002) Vines - A new graphical model for dependent random variables. Annals of Statistics, 30 (4). pp. 1031-1068. ISSN 0090-5364

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

A new graphical model, called a vine, for dependent random variables is introduced. Vines generalize the Markov trees often used in modelling high-dimensional distributions. They differ from Markov trees and Bayesian belief nets in that the concept of conditional independence is weakened to allow for various forms of conditional dependence. Vines can be used to specify multivariate distributions in a straightforward way by specifying various marginal distributions and the ways in which these marginals are to be coupled. Such distributions have applications in uncertainty analysis where the objective is to determine the sensitivity of a model output with respect to the uncertainty in unknown parameters. Expert information is frequently elicited to determine some quantitative characteristics of the distribution such as (rank) correlations. We show that it is simple to construct a minimum information vine distribution, given such expert information. Sampling from minimum information distributions with given marginals and (conditional) rank correlations specified on a vine can be performed almost as fast as independent sampling. A special case of the vine construction generalizes work of Joe and allows the construction of a multivariate normal distribution by specifying a set of partial correlations on which there are no restrictions except the obvious one that a correlation lies between $-1$ and 1.