Strathprints logo
Strathprints Home | Open Access | Browse | Search | User area | Copyright | Help | Library Home | SUPrimo

Vines - A new graphical model for dependent random variables

Bedford, T.J. and Cooke, R. (2002) Vines - A new graphical model for dependent random variables. Annals of Statistics, 30 (4). pp. 1031-1068. ISSN 0090-5364

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

A new graphical model, called a vine, for dependent random variables is introduced. Vines generalize the Markov trees often used in modelling high-dimensional distributions. They differ from Markov trees and Bayesian belief nets in that the concept of conditional independence is weakened to allow for various forms of conditional dependence. Vines can be used to specify multivariate distributions in a straightforward way by specifying various marginal distributions and the ways in which these marginals are to be coupled. Such distributions have applications in uncertainty analysis where the objective is to determine the sensitivity of a model output with respect to the uncertainty in unknown parameters. Expert information is frequently elicited to determine some quantitative characteristics of the distribution such as (rank) correlations. We show that it is simple to construct a minimum information vine distribution, given such expert information. Sampling from minimum information distributions with given marginals and (conditional) rank correlations specified on a vine can be performed almost as fast as independent sampling. A special case of the vine construction generalizes work of Joe and allows the construction of a multivariate normal distribution by specifying a set of partial correlations on which there are no restrictions except the obvious one that a correlation lies between $-1$ and 1.

Item type: Article
ID code: 4334
Keywords: correlation, monte carlo simulation, statistics, management theory, Management. Industrial Management, Statistics and Probability, Statistics, Probability and Uncertainty
Subjects: Social Sciences > Industries. Land use. Labor > Management. Industrial Management
Department: Strathclyde Business School > Management Science
Related URLs:
    Depositing user: Strathprints Administrator
    Date Deposited: 18 Oct 2007
    Last modified: 04 Sep 2014 14:51
    URI: http://strathprints.strath.ac.uk/id/eprint/4334

    Actions (login required)

    View Item