Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

The identifiability problem for repairable systems subject to competing risks

Bedford, T.J. and Lindqvist, B. (2004) The identifiability problem for repairable systems subject to competing risks. Advances in Applied Probability, 36 (3). pp. 774-790.

Full text not available in this repository. Request a copy from the Strathclyde author


Within reliability theory, identifiability problems arise through competing risks. If we have a series system of several components, and if that system is replaced or repaired to as good as new on failure, then the different component failures represent competing risks for the system. It is well known that the underlying component failure distributions cannot be estimated from the observable data (failure time and identity of failed component) without nontestable assumptions such as independence. In practice many systems are not subject to the 'as good as new' repair regime. Hence, the objective of this paper is to contrast the identifiability issues arising for different repair regimes. We consider the problem of identifying a model within a given class of probabilistic models for the system. Different models corresponding to different repair strategies are considered: a partial-repair model, where only the failing component is repaired; perfect repair, where all components are as good as new after a failure; and minimal repair, where components are only minimally repaired at failures. We show that on the basis of observing a single socket, the partial-repair model is identifiable, while the perfect- and minimal-repair models are not.