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It has been theoretically demonstrated that laser ablation is effective in the potential
deflection and mitigation of asteroids. However, there have been few experimental
studies to support this claim. The theoretical models are currently based on assump-
tions regarding the laser beam diameter, the power requirement, the formation of the
ejecta plume, and the potential for ejecta to contaminate and otherwise degrade any
exposed surface. Recent proposals suggesting the use of a solar pumped laser, in
particular, can be deeply affected by the re-condensation of the ejecta. To either
validate, amend and/or eliminate these assumptions a series of laser ablation experi-
ments have been performed. Using a 90 W, continuous-wave laser operating at 808 nm,
a rocky magnesium iron silica based material - olivine - has been ablated. These
experiments were used to examine the validity of the theoretical model and the
experienced levels of contamination. It will be shown that the current model correctly
predicts the ablated mass flow rate for rocky based asteroids, but overestimates the
contamination rate and the degradation of the optics.

© 2012 Elsevier Ltd. All rights reserved.
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1. Introduction Earth once every 10,000 years. This can cause local damage,

earthquakes and tsunamis. Asteroids that impact the Earth

Near Earth Asteroids (NEAs) represent both an opportu-
nity and a risk. Their pristine environment captures the
early formation of the solar system; while their impact
potential could result in the mass extinction of life. The
Earth has been, and will continue to be, the subject of many
other ground and air impacting events. Amid the observed
population, there are at least between 2000 and 200,000
objects that could impact the Earth [1]. On average, an
asteroid with a diameter greater than 100 m impacts the
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with a diameter larger than 1 km are considered to be global
killers. Such an impact event is considered to catastrophi-
cally annihilate 90% of all life, resulting in a nuclear winter,
with little chance of recovery within the near term [1]. This
is thought to have happened, once before, approximately 65
million years ago, with the impact of a 10 km diameter
asteroid at 12 km/s [23].

Therefore potential methods of asteroid mitigation and
deflection have been addressed by numerous authors
[2-4]. Amongst the many possibilities to deflect NEAs,
ablation has been shown to be theoretically one of the
most effective methods [5]. Work conducted in 2009 by
Sanchez et al. [5] compared the effectiveness of six
different asteroid deflection techniques. Through a
multi-criteria, quantitative comparison the nuclear inter-
ceptor, kinetic impactor, mass driver, low thrust tug,
ablation and the gravity tractor were assessed. Assess-
ment was made relative to the achievable miss distance at
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Nomenclature

(Am/A)siipes Ejecta mass per unit area deposited on
the microscope slides during ablation

A Area of the microscope slide
ap Absorbance

Aspor Area of the laser’s surface spot
Ca Heat capacity of the asteroid
Cn Momentum coupling

Cr Concentration ratio

dspot Diameter of the surface spot
dh/dt Surface layer growth
dm/dt  Mass flow rate during sublimation

E Incoming energy during the ablation process

E, Sublimation enthalpy of the asteroid

Fsug Force acting on the asteroid

hexp Height of the deposited ejecta from the
experiment

k Adiabatic index, for diatomic molecules

kp Boltzman’s constant

Kp Jet constant

ke Thermal conductivity of the asteroid

M, Molar mass of the target material

NEAs Near Earth Asteroids

Piau Solar power at 1 Astronomical Unit

Pin Absorption of the laser beam

Q* Energy required to ablated each kilogram of
material

Qconp  Heat losses due to conduction
Qrap Heat losses due to radiation

R Distance from the Sun measured in Astro-
nomical Units

r Radius from the spot location

SEM Scanning Electron Microscope

t Sublimation duration

T Transmittance

Tamb Ambient temperature

To Temperature at the centre of the asteroid

Tsys Sublimation temperature of the asteroid in

vacuum conditions
Average velocity of the ejecta plume

3 Black body emissivity of the asteroid

n Absorptivity

1A Efficiency of the ablation process

0 Elevation angle, from the surface normal
Omax Limited expansion angle

A Scatter factor

p Density of the ejecta plume

p* Density at the nozzle

Pa Density of the asteroid

01 Layer density

OsB Stefan-Boltzmann constant

T Degradation factor

s View angle

Ahgxp  Measured thickness of the deposited material
Am Mass loss during ablation

At Ablation duration

Nsys Overall conversion efficiency from solar input

to laser output
Habs Absorptivity of the illuminated asteroid

Earth, the warning time, the total mass into orbit and the
current technology readiness level. With both a relatively
short warning time and a low mass into space, ablation
can provide significantly higher and more controllable
rates of deflection. The technique is also advantageous as
it avoids the catastrophic fragmentation of the asteroid. It
also eliminates the need of having to physically land and/
or attach a system onto the surface of the asteroid [5].

Ablation is achieved by irradiating the asteroid with a
light source. This can either be collected and focussed
solar radiation or with a laser light source. Within the
illuminated focal point, the absorbed energy increases the
temperature of the asteroid, enabling it to sublimate. This
transforms the exposed material directly from a solid to a
gas. The ablated material then expands to form an ejecta
plume. Over an extended period of time, the resultant
thrust, induced by the ejecta plume and acting on the
asteroid can be used to push the asteroid away from its
original threatening trajectory [2]. This increases the
minimum orbit interception distance between the Earth
and the asteroid, otherwise preventing the Earth impact-
ing event [5-8].

Previous proposals for the initiation of laser ablation
considered using either a ground-based or space-based
facility [1,19]. For a ground-based facility an average
power level of several giga-watts would be required to
deflect a small, 40-80 m in diameter asteroid [19]. This
was considered to be a substantial investment in

infrastructure and resources. Therefore an alternative
option was to mount a mega-watt laser onto a large
single spacecraft. The laser would be powered by a
nuclear reactor [20]. However, manoeuvring and operat-
ing such a large structure, at close proximity to the
asteroid, under an irregular gravity field was considered
to be very difficult. This is further coupled with develop-
ing a nuclear reactor for space-based applications, and the
associated political ramifications. Therefore an alternative
concept was proposed. Instead of a large single structure,
a swarm of small spacecraft, each equipped with an
identical kilo-watt solar-pumped laser could be used
[10]. This provides a much lighter and more adaptable
concept. By superimposing each laser beam, the cumula-
tive surface power density would be used to initiate the
ablation process [10]. Singular or multiple ablation spots
can also be used. This increases the flexibility and overall
redundancy of the deflection mission. As required, more
spacecraft can be added or removed from the existing
configuration, eliminating the need to develop and design
new spacecraft(s) [6,7,9]. The potential for deflection is
therefore dependent on the number of spacecraft located
within the vicinity of the asteroid, their combined laser
power and the material properties of the asteroid.
Within this configuration, each laser would be powered
by the Sun, either directly or indirectly. For direct pumping
the solar radiation is collected and concentrated directly onto
the laser medium. For indirect pumping, the incoming solar
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radiation is first focussed onto a set of highly efficient solar
cells. This immediate step is used to convert the incoming
solar radiation into electrical energy that is then used to
power the laser. For both cases - direct and indirect pumping
- a light, deployable primary mirror and a smaller secondary
(both known as the solar concentrators) are needed to collect
the freely available solar radiation of the Sun. A steering
mirror is also required to target the laser beam onto the
surface of the asteroid. Large radiators are needed to keep the
laser within its operational limit and to cool the spacecraft.

However, any exposed surface within the vicinity of
the ejecta volume, including the steering mirror and solar
concentrators, would be subjected to the continual con-
taminating effects of the condensing ejecta. It is currently
assumed that once the ejecta plume comes into contact
with any given surface that the particles will immediately
re-condense and stick. The continued accumulation of the
ejecta will decrease the transmittance and increase the
absorbance of the exposed surface. The degradation
caused by the ejecta is considered to follow the Beer-
Lambert-Bouguer law and is dependent on the absorptiv-
ity of the condensed material. The laser beam is also
expected to be attenuated by the ablated plume of ejecta.

This paper will show that the effect of the ejecta con-
tamination, according to the current model, has a major
impact on the ability of the laser ablation process to produce
a significant deflection action. Therefore to examine the
actual operational and environmental constraints of laser
ablation, a series of experiments have been performed.
Within a vacuum chamber, and using a 90 W continuous-
wave laser, the ablation response of a magnesium iron
silicate (olivine) sample has been assessed. This assessment
included the development of the ejecta - cone angle diver-
gence, mass flow rate, and plume density — and the affects of
the condensing ejecta. All results have been compared to the
numerical model. This paper therefore investigates the effect
of laser irradiation on a rocky based asteroid simulate.
Providing experimental data and model validation is an
important step towards the realisation of a laser asteroid
deflection system. This paper details the current ablation and
asteroid deflection models; highlighting the conditions
placed upon the assumed physical parameters and the
response of the ablation process. The laser ablation experi-
ment is then presented. The results from the experiment are
then given and placed within the context of a revised
deflection simulation. Conclusions have been drawn and
areas of future work addressed.

2. Current ablation and asteroid deflection models

The current ablation model is based on the energy balance
of sublimation [6,11]. This combines the absorbed laser beam
power Py, the sublimation enthalpy of the illumined material
by the laser E,, and the heat losses through conduction Qconp
and radiation Qgap respectively. Therefore the mass flow rate
Mexp of the ablated material during sublimation can be
expressed as

. 1
dr = Mexp = E_V(PIN_QRAD_QCOND) M

If the mass flow is negative then there is not enough
energy to initiate the ablation process.

The heat loss through radiation was assumed to act as
a black-body and is therefore defined as

Qrap = Is5eAspor(Tays—Tamp) )

where asp is the Stefan-Boltzmann constant (5.6704 -
108 W/m2K?), ¢ is the black body emissivity of the
illuminated material, Aspor is the area of the spot illumi-
nated by the laser, Tsyp is the sublimation temperature of
the illuminated material (in vacuum conditions) and Tqmp
is the ambient temperature that in space is 4 K and in the
laboratory environment is 298 K.
The heat loss due to conduction is determined from

CapAK
Qconp = (Tsug—To)Aspor 1 / % 3)

where ¢4, p4 and k; are the heat capacity, density and thermal
conductivity of the asteroid respectively, t is the equivalent
time to bring a layer ( < Tmm thick) of the target material to
sublimation temperature (this depends on the diffusion in
the target material and the speed of recession of the ablated-
ejecta layer), and Ty is the temperature at the centre of the
asteroid. This is assumed to be 298 K, which coincides with
the local temperature of the laboratory. For the simulations
within this paper, the density of the asteroid analogue target
material was measured. All other values were assumed based
on the physical properties of olivine. This is given in Table 1.
The enthalpy of sublimation, as given in Table 1, combines
the enthalpy of vaporisation and the heat fusion. It is
considered to be the complete enthalpy of vaporisation,
rather than the incident of vaporisation.

Note that, the model assumes that the internal tem-
perature of the asteroid is unchanged and therefore
remains at 298 K throughout the ablation process. Further-
more, the asteroid is not rotating. The internal temperature
corresponds to the constant and controlled room tempera-
ture of the laboratory. The latter assumption is introduced
for consistency with the experiments that will be con-
ducted on a non-rotating target.

The average velocity of the ejecta plume ¥ can be
calculated assuming Maxwell’s distribution of an ideal gas
[5,6]. This is defined by the sublimation temperature Tsyp,
the molar mass of the ablated gaseous phase of the target
material (this is taken to be 50 g/mole and accounts for a
diatomic molecule of forsterite within the vapour regime)
M,, and Boltzman'’s constant kj. This is given by

_ 8k, T
U= b1 SUB (4)
Mg

Table 1

Assumed parameters for the asteroid analogue target material.
Parameter Value
Density (kg/m?) 3500
Sublimation enthalpy, E, (J/kg) [26] 14.5%10
Black body emissivity, ¢ [6] 0.95
Temperature at the centre of the asteroid, To (K) 298
Heat capacity, ca (J/kgK) 1361
Thermal conductivity, ka (W/mK) [25] 4.76
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The force acting on the asteroid Fsyp is given by the
product of the ejecta velocity and the mass flow rate of
the ablated material. This is given as

FSUB = )vvmexp (5)

A constant scatter factor A is used to account for the
uniform expansion of the ejecta over a given half sphere.
This is considered to be a worst case, conservative
assumption. The velocity of the ejecta is also assumed to
be constant, independent of the local elevation angle, and
therefore is only a function of the sublimation tempera-
ture. This is given in Eq. (4). The force acting on the
asteroid is consequently only dependent on the mass flow
rate. A higher mass flow rate results in a higher thrust.

The input power Py is computed assuming that the
beam is generated by pumping a fibre laser. The electric
power is generated by a solar concentrator focussing the
sunlight onto a solar array. It is assumed that only 80 % of
the incoming laser light is absorbed and that the rest is
reflected. The absorbed power is therefore

PIAL;QSPOT ©)
where 7 is the degradation factor due to contamination
(see below), n.ps is the absorptivity of the illuminated
asteroid, #sys is the overall conversion efficiency from the
solar input to the laser output, C is the concentration
ratio or ratio between the area of the solar concentrator
and the area of the spot, P;ay=1378 W/m? is the solar
power at 1 Astronomical Unit, Aspor is the area of spot on
the surface of the asteroid, and R is the distance from the
Sun measured in Astronomical Units. The overall conver-
sion efficiency is assumed to be 19%. This accounts for
solar cells with an efficiency of 40%, a laser system with
an efficiency of 60% and a nominal reflectivity of the
concentrators of 90%.

The sublimation process is also considered to be
governed by three fundamental assumptions. The first
considers that the formation of the ejecta plume is similar
to, although not identical to, the development of a rocket
exhaust in standard methods of rocket propulsion. The
same approach is used to model cometary sublimation
[12]. This assumes that the ablated ejecta is a compres-
sible, friction free gas (with no solid particles), which has
a constant velocity and temperature, and occurs below
the limit of ionisation of plasma formation [11,6]. It
therefore assumes a vapour-only flow regime. At
increased intensities a strong laser generated plasma
can form. Plasma, through the inverse Bremsstrahlung
effect, is known to absorb the incoming laser beam and
therefore shield the target from its affects. This would
dramatically reduce the coupling between the laser beam
and the asteroid that otherwise provides the low thrust
required for the deflection technique to become effective.
The second assumption is that the asteroid is a spherical,
dense, non-porous homogenous body. The asteroid is
considered to have an infinite heat sink, where during
the ablation process the asteroid maintains a constant
internal temperature. The third assumption is that all the
ejected particles will immediately re-condense and stick
to any exposure surface. Degradation is assumed to follow

Py = TnabsnsysCR

Fig. 1. Geometry of the plume—local reference frame.

the Beer-Lambert-Bouguer law, and a sticky coefficient of
one is used throughout [11,6].

By taking the first assumption the density of the ejecta
plume at any given distance r from the spot location, and
elevation angle 6 from the surface normal can be defined
[11]. This is illustrated in Fig. 1 and can be expressed as

depor {COS< 70 ﬂz/"—l @

r,0) = p*K
pEO=p P(2T+d5P0T)2 20max

A compressible, friction free gas is typically classified
with a constant adiabatic index k, where for diatomic
molecules k=1.44 [11]. In Eq. (7) the jet constant K, for
diatomic molecules is defined as 0.345 with the limited
expansion angle 0yax as 130.45° [24]. By considering the
standard rocket equation, the density at the nozzle, p* is
also given as

w_ Mexp 3
AsporV ®)

Kahle et al., 2006 [11] also considered the rate of ejecta
contaminating and degrading any exposed surface. The
variation of ejecta thickness - known as the surface layer
growth - on any exposed surface can be expressed as [6,11]
% = Z;I—IpCOS%f )]
where i/ris the view angle i.e. the angle between the normal
to the surface and the surface-to-spot vector. To account for
the expansion of gas into a vacuum the average velocity is
multiplied by a factor of two. The denominator p; is the layer
density. Based on current literature, for a magnesium iron
silica material, this is assumed to be 1 g/cm? [11]. All of the
ablated particles of ejecta coming from the asteroid are
assumed to stick to every exposed surface on the spacecraft.
The increasing thickness of the contaminants will ultimately
reduce the reflectivity of the concentrators and therefore the
laser output power. The consequence is a reduction of the
thrust imparted onto the asteroid until the sublimation
ceases completely and the thrust associated with it. The
reduction of the reflectivity of the concentrator, known as the
degradation factor, T can be computed from the Beer-
Lambert-Bouguer law [11]. This is given by

T=e 2N (10)

where # is the absorptivity (absorbance per unit length) of
the accumulated ejecta. For olivine, at 808 nm (the wave-
length of the laser) this is assumed to be approximately 10/
cm [11,10]. A factor of 2 within the expression accounts for
the double passing of the surface layer [11].
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Gauss planetary equations are used to compute how
the sublimation process will affect the orbit of the
asteroid. It is assumed that the force in Eq. (5) is always
aligned to the velocity vector of the asteroid [18]. The
Gauss planetary equations are propagated forward in time
from the moment the sublimation starts to the expected
time of the impact of the asteroid with the Earth [18]. At
the expected time of impact with the Earth, this can be
used to compute the position and velocity of the deflected
asteroid. From the position and velocity, the impact
parameter at the expected time of impact can be
computed.

For example, for a relatively small NEA, with an
assumed diameter of 250 m and a mass of 2.7-10'% kg,
the miss distance is illustrated in Fig. 2. For this case,
multiple spacecraft are flying in formation with the
asteroid. Each spacecraft carries a laser (with an output
power of 22 kW) and a 10 m diameter primary mirror
(solar concentrator). Together they concurrently beam
their lasers onto the same spot on the surface of the
asteroid. It is assumed that the temperature of the spot
remains constant and is equal to the assumed sublimation
temperature of Forsterite, which is 1800 K. Fig. 2 shows
the miss distance as a function of the number of space-
craft and the warning time. The miss distance, as given in
Fig 2, is shown in kilometers. The warning time is the
time from the beginning of the deflection action to the
expected impact of the asteroid with the Earth. The result
in Fig. 2 does not include the effects of contamination.
With deflection operations of between 1 and 9 years
(from the expected impact with the Earth) Fig. 2 demon-
strates an achievable miss distance of between 5000 and
30,000 km respectively.

Fig. 3 shows the result for the same mission scenario
but this time including the contamination of the solar
concentrator. This is in accordance with the model devel-
oped by Kahle et al., 2006 [11]. The contamination
induces a fast degradation of the collected power and a
rapid halt of the sublimation process. Depending on when
the sublimation starts and ends the miss distance can
increase or decrease (see Colombo et al., 2008 for more
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Fig. 2. Miss distance of a 250 m diameter, 2.7-10'°kg (based on
Apophis) asteroid as a function of the warning time and the number of
satellites: without contamination.
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Fig. 3. Miss distance of a 250 m diameter, 2.7-10'°kg (based on
Apophis) asteroid as a function of the warning time and the number of
satellites: with contamination.

details [18]). This is the reason for the periodic trend with
the warning time that can be seen in Fig. 3.

As illustrated in Fig. 3, accounting for ejecta degrada-
tion and contamination, the maximum achievable miss
distance reduces to 4500 m. This results in a significant
reduction of performance of 85%. Contamination reduces
the achievable surface power density of the laser, and the
associated thrust imparted onto the asteroid. Contamina-
tion of any optical surface will have a major impact on the
overall success of any asteroid deflection mission.

The model developed in this section also allows for the
estimation of the coupling between the output power from
the laser and the change of linear momentum of the asteroid.
This is known as the momentum coupling coefficient, Cp,
[13-16]. For continuous laser operations it is defined as the
induced force Fgyp relative to the incoming absorbed laser
power that occurs at the spot location. This can be written as:

Cp = Lsue (11
PINEXP

During the experiment the force was not directly
measured, but was calculated from Eq. (5) combining
the measured ablated mass flow rate with the measured
ejecta gas velocity. The absorbed power Pjy,,, was taken
from the known power illumination of the spot and
combined with the assumed absorption of the target
material and the laser beam within the plume. The energy
required to ablate each kilogram of asteroid material Q*
could also be determined. This is measured in J/kg and is
expressed as

_E
T Am

The energy E is the incoming laser energy during the
ablation process. It is therefore a product of the incoming
absorbed laser power at the spot location multiplied by
the ablation time. Am is the mass of the ablated material
in a given time period. From this and the momentum
coupling, the efficiency of the ablation process #4p could
be determined. This defines the efficiency at which the
laser energy is converted into kinetic energy, carried away

Q* (12)
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by the ablating ejecta. This is given as [14,21]
1
M= 5 Q" (13)

Note that #4p does not include the effect of any
absorption losses within the ejecta plume. It is based
purely on the incoming laser energy and power at the
spot location.

3. The experiment

A 90 W continuous-wave laser, operating at 808 nm,
was used to initiate all ablation events. This was below
the threshold of plasma formation. The formation of
plasma was not accounted for within the model, and
would otherwise have a degrading effect on the quality
and efficiency of the ablation process [14,15,6]. For initial
calibration, all ablation events occurred within a sealed
and self contained glass test chamber. The chamber was
purged with nitrogen to reduce the occurrence of atmo-
spheric combustion to negligible levels. The ejecta mass
flow rate, plume density, plume divergence and the
influence of the re-condensing ejecta were then assessed
[22]. The experiment was then repeated within a vacuum
chamber. A pump down pressure of 2-10~> mbar was
achieved. This removed the atmospheric particle drag
disturbance; allowing for the maximum and free spread-
ing of the plume [17]. This was considered to provide a
realistic simulation of the laser-to-asteroid interaction.

Olivine was used to represent a dense, rocky, s-type
asteroid. It had a density of 3500 kg/m> and was shaped
into a cube by cutting a larger rock sample with a
diamond blade. This enabled all ablation events to occur
onto a flat face. A flat face was used to avoid, or severely
limit, the ablation process being subjected to any irregu-
larity of the surface material (including surface curvature)
and any inhomogeneities of the target material’s compo-
sition. The aim was to provide a tightly focussed laser
beam onto the surface of the target material. It was also
considered to be a realistic analogue of the in-space event,
where the spot size of the laser beam would be small in
comparison to the size, and major features on the surface
of the asteroid. Mass measurements of the target material
before and after each ablation event enabled the rate of
sublimation to be determined.

The test chamber was surrounded by two cameras, and
a spectrometer. Viewing access was granted through
optical windows. Each window had a transmittance of
approximately 94%. Two high resolution, digital cameras
(Panasonic HDC), mounted perpendicular to each other,
recorded each ablation event. During each ablation event
the cameras were used to measure the divergence and
formation of the ejecta plume. A spectrometer was used to
measure the inferred temperature of the ablated gas. This
was determined from the Wien’s Displacement law, and
was achieved by measuring the intensity and wavelength
of the emitted spectra. The velocity of the gaseous ejecta
was then calculated, assuming Maxwell’s distribution of
an ideal gas. All experiments were repeated three times.
This aimed to provide more viable and well calibrated data
points.

Within the chamber, the asteroid analogue target
material was mounted on a raised pedestal, at a pre-
determined location. This was relative to the known focal
point of the laser, which had an approximate spot size
diameter of ~1.8 mm. This corresponded with a surface
power density (accounting for optical losses through the
system) of ~2.44-1.69 kW/cm? For each experiment
reported herein, ablation occurred for 10 min. To collect
and assess the ablated ejecta, highly cleaned microscope
slides were positioned within the ablation volume. Before
and after each ablation event, mass measurements of the
microscope slides enabled the mass of the deposited
ejecta at different points within the plume to be deter-
mined. By measuring the mass per unit area deposited on
each microscope slide (Am/A)s.ipes, where A is the area of
the microscope slide, and by measuring the thickness of
the deposited material Ahgxp, the density of the deposited
material can be computed. This is achieved by

(Am(r,()))
A JsupEs (14)

,0) =
Pexp(0) Ahpxp

From the model, the expected collection rate of the
ejecta on each microscope slide can also be derived. This
is given as

1dm
Adt

Eq. (15) assumes that the velocity of the expanded gas
is about 27 (to account for full expansion into a vacuum)
and that all the particles are sticking onto the surface of
the microscope slides. The effect of the deposited ejecta
mass was assessed by measuring the light transmittance
across each microscope slide. The relative reduction in the
transmittance T and the increase in absorbance a;, caused
by the deposited ejecta were measured. This was achieved
by either using a power meter or photographic analysis of
the actual microscope slides. By considering only a one
way transmittance of the microscope slides, the value of
the associated absorbance can be calculated from the
Beer-Lambert-Bouguer law for optical absorption. This
is given as

=2p(r,0)v (15)

ap :log% (16)

Given the absorbance a;,, the associated absorptivity
nexp (@absorbance per unit length) given in Eq. (10) can be
determined. This is achieved by dividing the experimen-
tally determined absorbance a, by the experimentally
measured height of the deposited ejecta hgxp. The height
of the collected ejecta was measured with a Nikon
Nomarski microscope. Therefore

ap

Hexp = 17)

hEXP

In the following section the absorptivity of the con-
tamination layer estimated from the experiments will be
used to re-assess the effectiveness of the deflection action.
The degradation is a function of both the absorptivity of
the condensed layer and the thickness, which in turns
depends on the layer growth rate. By measuring hgxp over
time one can also derive a correction factor to Eq. (10) and
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compute a degradation factor that is consistent with the
experimental results.

4. Results

Laser ablation resulted in the formation of a small and
extended rocket plume. This was dominated by the
gaseous exhaust of material, and is illustrated in Fig. 4.
From the initial illumination of the laser beam, in addition
to the gaseous exhaust, the ablation process also resulted
in the formation of small solid particles. However,
throughout all the experiments this only occurred for a
very small portion of time; almost instantaneously once
the laser beam had initially illuminated the olivine
sample. The solid particles were also distributed over
180°. This is also illustrated in Fig. 4, and is portrayed
by the creation of white streaks. The generation of solid
ejecta is not currently accounted for within the numerical
model, and would otherwise enhance the momentum
exchange between the laser beam and target material.

Under high vacuum, based on the model with an input
illumination power of either 62 or 43W, the initial mass
flow of the ablated ejecta was 2.1077 kg/s. At the end of
the ablation period (10 min) the experimental mass flow
rate of the ablated material had reduced to 2.5 x 1078 kg/s.
The rapid reduction in the mass flow rate is expected to
be due, in part, due to the defocusing of the laser beam
and the additional thermal effects that are not currently
accounted for within the numerical model. Critically the
model does not account for the three dimensional thermal
diffusivity. It is limited to a mono-dimensional transfer of
heat. It also assumed a constant value of emissivity, heat
capacity, density and thermal conductivity. In reality
these parameters have a temperature dependence on
the optical and thermal properties of the target material
[29].

In practice the ablation response resulted in the
widening and deepening of the surface hole. This was
caused by the tunnelling away of the surface and subsur-
face material. A small, narrow hole was formed that
extended into the target material. Similar to a rocket
exhaust, as a function of time, this would have assisted in
constraining the formation of the gaseous ejecta plume.
The surface hole diameter was also widened slightly.
An initial surface spot radius of ~0.9 mm increased to
~0.95 mm. The rim was also partially evaporated,
which suggests that the rim was also illuminated. The

composition of the rim and that of the target material also
varied. Confirmed by a Scanning Electron Microscope
(SEM) the surface material was initially composted of
(Mg,Fe),Si04. However during the ablation event the
subsurface inclusions of aluminium and calcium were
brought to the surface (i.e. from the bottom of the
ablation hole and/or from the material matrix of the
sample). These inclusions represent impurities within
the target material’s inhomogeneous structure [30]. Again
confirmed by the SEM the illuminated rim was composed
of (Ca,Al)SiO4. The sublimation temperature at 1 atmo-
sphere of olivine with calcium deposits is 3800 K and for
Mg,SiO,4 is 3350 K [31]. This variation will result in the
incongruent sublimation of the target material [31]. This
will occur over a range of temperature limits and can
include the full, partial and un-vaporised sections of the
illuminated material [25,31]. The exposure of new mate-
rial may therefore increase the sublimation temperature
of the illuminated material. The laser beam will have to
heat the rock to a higher temperature, while also experi-
encing the effects of a slightly defocused laser beam.
Lower pockets of sublimation may also be encountered.
This can be caused by the transparency of the pure
minerals contained within the target material. The plume
of gaseous ejecta will also increase the local pressure
surrounding the ablation zone. This will assist in
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Fig. 5. Mass deposition per unit area: experimental result vs. model
prediction at 3 cm from the spot.

Fig. 4. Ablation response of the olivine sample (Left, with ejecta; Right, mini rocket plume).
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Fig. 7. Mass deposition per unit area: experimental result vs. model
prediction at 10 cm from the Spot.

increasing the temperature of the plume and in partially
melting the target material around the ablation rim [32].

The self-cleaning action of the laser beam, as discussed
later, would also contribute to the rise in the ablated gas
temperature. The laser is considered to either: (1) re-heat
and re-sublimate the deposited ejecta [32] and/or (2) re-
excite and re-direct any ejecta that enters the laser beam,
preventing it from reaching or depositing onto the micro-
scope slides. However each hypothesis needs to be validated
further with more experiments and SEM analysis. After the
initial ablation event, the ablated particles will also recom-
bine and separate into much simpler molecules and atoms.
This will release more energy into the flow and assist in
increasing the temperature of the plume [27].

The absorption of the laser radiation into the bulk of
the target material also has to be considered. To introduce
the actual absorption of the target material the worst case
scenario was taken. This was considered to be
1-(03 x 1.2). i.e. 0.3 is the worst-case reflectivity of
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Fig. 8. Thickness of the material deposited on the slides at 3 cm from
the spot. Comparison between experimental measurements and simula-
tion results.
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Fig. 9. Thickness of the material deposited on the slides at 7 cm from
the spot. Comparison between experimental measurements and simula-
tion results.

olivine at the critical frequency of the visible range and
1.2 is the peak increment of reflectively at the frequency
of the laser (808 nm). It was also assumed that the gas
within the ejecta plume absorbed about 10% of the
incoming laser beam. Therefore the power value as given
in Eq. (6) is the power absorbed at the spot. M in
Eq. (6) accounts for the absorption of the laser beam into
the target material and the absorption of gas within
the plume of ejecta. It is therefore expressed as
Nabs=0.9(1—(0.3 x 1.2)).

These cumulative effects would explain the tempera-
ture difference between the expected spot temperature
(3100-3800 K) and the result measured by the spectro-
meter (4285-4747 K). The additional heat absorbed in the
Knudsen layer is equivalent to increasing the enthalpy of
sublimation by approximately 1-2%10° J/kg [28] and
heating up the gas from 3100 to 4747 K would consume
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Fig. 11. Degradation factor: comparison between experimental results
and model prediction at 3 cm from the spot.

(assuming a specific heat of 1361 J/kg K) approximately
2 MW/m? of energy.

Each experimental test reported in the figures is the
average mass flow rate of the ablated target material. The
model presented in this paper, predicted a much higher
ablated mass flow rate. The inclusion of the formation of
the Knudsen layer [30,33,34] and the absorption of energy
in the plume provided some corrective factors that
allowed for a more accurate prediction of the mass flow
rate. However the current numerical model is still limited.
It does not account for the three dimensional thermal
diffusion effects. This could potentially play an important
role in the reduction of the mass flow with time. Further
analyses, therefore, needs to be performed to update the
simulations with a more accurate model of the energy
draining effects.

The efficiency of the ablation process also varied
between 0.022 % and 0.148 %. This corresponded with a
measured momentum coupling coefficient of between
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Fig. 12. Degradation Factor: comparison between Experimental results
and model prediction at 7 cm from the spot.
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Fig. 13. Degradation factor: comparison between experimental results
and model prediction at 10 cm from the spot.

6.15-10~7 and 4.10-10~°% N/W and an energy usage of
between 1.76 - 108 and 1.17 - 10° J/kg. The range of data is
caused by the variation in the mass flow rate of the
ablated material. All values given are, in part, calculated
from the average ablated mass flow rate (over the abla-
tion period) gained from the experiment. The reported
momentum coupling coefficient was considered to be a
more important parameter than the energy usage and
efficiency of the ablation process. An increase in the
momentum coupling coefficient implies an increase in
the ablated mass flow rate. Also unlike conventional
propulsion-based ablation, the deflection of asteroids
through laser ablation is not fuel (i.e. mass) limited. If
required the entire asteroid could be ablated. This could
provide a potentially endless supply of propellant for the
ablation process. However the current show stopper is in
the degrading and contaminating effects of the ablated
ejecta. This is currently being addressed.

The velocity of the gaseous ejecta plume v was cal-
culated to be ~1130.8 m/s. This was inferred by using the
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temperature of sublimation of the target material (3100-
3800 K) and assuming Maxwell’s distribution of an ideal
gas. It should be noticed that the temperature recorded in
the experiment was more than the minimum sublimation
temperature assumed for the deflection simulations in
Section 2.

Figs. 5-7 shows the accumulated mass per unit area
for the different experiments (i.e. tests) and at different
distances from the spot. The values given correspond to a
few discrete, but representative samples that were taken
along each microscope slide. Each test produced a differ-
ent ablated mass flow rate, which is also reported in the
figures. It should be noted that the reported mass flow
rate as given in each figure is the average value that was
experienced over a sublimation period of 10 mins. From
inspection it can be observed that there is a direct
correlation between the amount of deposited material
and the ejected mass flow rate. The input power for test 1
was 43 W while for test 2 and 3 it was 62 W. For all three
distances - either 3, 7 or 10 cm away from the spot - the
deposited mass predicted by the model is very similar to
the experiment.

Figs. 8-10 shows the thickness of accumulated material.
The experimental results show a much higher thickness than
predicted by the model, although with a similar variation
with the elevation angle. An exception to this is represented
by the central point at elevation of zero degrees. This
demonstrates that the laser beam has a cleaning effect on
the microscope slides. This is partially due to the fact that
the particles in the laser beam tend to be excited while
travelling towards the microscope slides and partially
because they are re-evaporated once deposited. Figs. 11-13
shows the measured degradation of the light intensity going
through the microscope slides. Within these figures the
experimentally derived degradation factor, as given in
Eq(10) is denoted T. Degradation is caused by the accumula-
tion of the deposited ejecta. This reduces the transmittance
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Fig. 14. Revised deflection simulations with the experimentally mea-
sured 7.

of the exposed surface. The profile of the degradation factor
follows closely the distribution of the thickness.

The model predicted the ejecta to result in a signifi-
cantly greater degradation than was otherwise observed.
This degradation is expected to be higher at lower eleva-
tion angles, where the plume density is large. The thick-
ness instead is much higher than expected with an equal
mass per unit area. The density of the material deposited
on the microscope slides is therefore lower than the
1000 kg/m® assumed in the simulation model. At 7 and
10 cm the average density is about 250 kg/m>. At 3 cm
this is much higher with an average value over the
central slide of about 700 kg/m?>. The average absorptivity
at 7 and 10cm from the spot location is around
5.10*m~!. However at 3 cm from the spot location, on
the central slide the average absorptivity increases to
about 10° m~'. The absorptivity values then drops off
rapidly below 10*m~"! over the two microscope slides
positioned at +45°.

It is therefore reasonable to assume that at 3 cm from
the spot location that the plume is very focussed and that
the material is mainly distributed over the central slide.
At 7 and 10 cm from the spot location the plume is more
expanded and therefore leads to a more distributed layer
of material. In all cases it seems that the model assumes
an incorrect growth of the deposited material, an incor-
rect density and an incorrect absorptivity value. It also has
to be noted that the deposited material is not bonded
with the slides, i.e. by vibrating the slides most of the
accumulated material can be removed.

4.1. Revised deflection simulations

Data gained from the experiment campaign demon-
strated a good representation to the expected, theoretically
predicted mass flow rate. However, the ejecta plume
appears to be more focussed than was otherwise predicted
by the model. This factor would increase the performance
of the deflection method but is dependent on the type of
material and the composition of the given asteroid. For a
rocky material, composed of olivine it is reasonable to
consider the model as being conservative. However, further
analysis with different materials is still required to provide
full characterisation of the laser ablation process. Note that
the temperature of the ablation spot is higher than in the
model as the power density is higher. This aspect needs to
be investigated further as the model assumes that an
increase in power density will increase the mass flow, as
it does, but will not increase the temperature of the spot.
Theoretically the thrust is only increased by increasing the
mass flow rate. It is also interesting that while the laser
beam spot size diameter is 1.8 mm, the area of the ablated
material is much larger. The diameter of the hole created
during ablation increased. This suggests that the ablation
process extends beyond the area initially illuminated by
the laser.

The experimental analysis has also demonstrated that
the contamination due to the re-condensation of the
sublimated material is far lower than forecasted in Kahle
et al, 2006 [11]. One reason seems to be that the
condensed material has a much lower density than
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expected and is different in nature from what was
expected. The absorptivity of the condensed ejecta was
two orders of magnitude lower than otherwise assumed in
the model. Also at 3 cm away from the spot, it appears that
the deposited ejecta were subjected to a much more
focussed plume, and that the deposited material appears
to be the subject of compression. The situation at 3 cm is
not representative of the conditions in which the space-
craft are supposed to be flying in. The microscope slides
positioned at 7 and 10 cm displays a more representative
behaviour. From the light transmittance analysis, the
ejecta on the microscope slides positioned at 7 and
10 cm away from the spot have an average absorptivity
value of 5-10*m~"! and a density of 250 kg/m>. Using
these values the deflection simulations were re-computed.
For direct comparison the initial conditions and the overall
efficiencies for the results previously obtained in Figs. 2
and 3 were used. The updated deflection scenario is given
in Fig. 14. Using the same mission scenario, but the
experimentally determined absorptivity value (rather than
assumed) it can be summarised that over a one to nine
year operational period the achievable deflection distance
varies from 85 to 10,000 km. This is relative to an increase
of spacecraft that fly in formation with the asteroid.

Fig. 14 shows a substantial increase in performance. In
comparison to Fig. 3, which shows the original and expected
level of contamination, the achievable miss distance doubles
in magnitude. A maximum deflection distance of 10,000 km
is achieved. This is an increase of performance of 122%.
While the effect of the deposited ejecta contamination is
still present, it is reduced with respect to the expectations of
the model. However it should be noted that although the
new simulations, with the updated contamination factor
show an increase in performance, it does not take into
account the higher sublimation temperature (registered
during the experiments) and the additional energy drains.
From preliminary calculations, if the additional energy
drains and a sublimation temperature (in the 3100-3800K
range) are considered then, to achieve an equivalent per-
formance the concentration ratio would need to be
increased to 60000. Also note that, during each experiment
the microscope collection plates were at room temperature
(25 °C). It is therefore reasonable to expect that a higher
temperature might decrease the condensation of material.
One possible method to reduce the effect of contamination
of the plume would be to maintain the collectors at a
moderately high temperature, over 100 °C.

5. Conclusion

The experiments performed within this paper enabled
the current modelling technique for laser ablation to be
assessed. While the experimentally measured and theoreti-
cally predicted mass flow rates of the target material and
deposition rate of the ejecta compared well to each other,
the nature of the deposited ejecta was significantly different.
The experimentally measured absorptivity values were two
orders of magnitude lower than assumed in the model. The
density of the deposited ejecta was also reduced. The model
therefore assumed an incorrect growth of the deposited
material, density and absorptivity of the condensed

material. It also assumed that all the ejected material would
bind with any exposed surface. This was determined not to
be the case. These parameters therefore represent a current
inaccuracy within the existing modelling technique. This
will otherwise affect the endurance, efficiency and overall
response of any ablation based asteroid deflection and
mitigation mission. Ejecta contamination will always affect
any laser ablation based mission. However the experiment
also demonstrated that the effect of the contaminating
deposited ejecta was far less than predicted in the model.
This results in a comparatively larger level of achievable
deflection, where there is no immediate saturation of any
exposed surface. However, further work is still required to
assess the laser ablation process. A wider range of asteroid
analogue target material intends to be tested. This includes
a highly porous sample and a collection of meteorites. The
inhomogeneous nature of the target material, and that of
the asteroid, must also be accounted for. Different com-
pounds will ablate at a lower and higher sublimation
temperature. The model also needs to be developed to
account for the three dimensional thermal diffusivity and
the temperature dependence on the optical and thermal
properties of the target material. This includes the emissiv-
ity, heat capacity, density and thermal conductivity. The
non-thermal emissions created by the ablated gas particles
also needs to be considered. More experiments are therefore
required to further explain and develop the mathematical
model and existing discrepancies.

Once proven successful for a range of compositions
present within the asteroid, and small body population,
the role of laser ablation could be extended for a number
of space-based applications. The laser ablation process
itself effectively tunnels into the illuminated material,
extracting material in the form of an ejecta plume. This
results in the extraction of deep and previously inacces-
sible material that could not otherwise be retrieved
through conventional in-situ and sample return based
missions. The material extracted from laser ablation could
be collected externally by the spacecraft flying through
the plume. The collected ablated material could then be
used as part of a sample return mission and/or for
resource exploration and exploitation. In-situ spectra
analysis of the ablated ejecta plume could also be per-
formed. Laser ablation therefore provides a novel techni-
que for the interaction and collection of material from a
small, rocky body. It is also considered to be advantageous
as it provides a contact-less and remote method of
analysis that eliminates any mission requirement to
physically land and/or attach itself to the asteroid. For
asteroid deflection purposes it also avoids any possible
fragmentation of the asteroid. Laser ablation could enable
scientists and engineers to further characterise the com-
position, formation and evolution of asteroids and other
small bodies.
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