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Abstract

The laminar flow of inelastic non-Newtonian fluids, obeying the power-law model, through a planar sudden

expansion with a 1:3 expansion ratio was investigated numerically using a finite volume method. A broad range

of power-law indices in the range 0.2 ≤ n ≤ 4 was considered. Shear-thinning, Newtonian and shear-thickening

fluids are analyzed, with particular emphasis on the flow patterns and bifurcation phenomenon occurring at high

Reynolds number laminar flows. The effect of the generalized Reynolds numbers (based on power-law index,

n, and the inflow channel height, h) on the main vortex characteristics and Couette correction are examined

in detail in the range varying from 0.01 ≤ Regen ≤ 600. Values for the critical generalized Reynolds number

for the onset of steady flow asymmetry and the appearance of a third main vortex are also included. We found

that the shear-thinning behavior increases the critical Regen, while shear-thickening has the opposite effect.

Comparison with available literature and with predictions using a commercial software (FluentR© 6.3.26) are

also presented and discussed. It was found that both results are in good agreement, but that our code is able

to achieve converged solution for a broader range of flow conditions, providing new benchmark quality data.

Keywords: Power-law model, planar sudden expansion, steady flow, flow bifurcation, shear-thinning and

shear-thickening fluids

1. Introduction

When a Newtonian fluid flows at low to moderate Reynolds number in a 2D planar channel and encounters

a sudden expansion, flow separation occurs resulting in a pair of symmetric recirculating eddies along the

downstream walls. The vortices become asymmetric, but steady, when the Reynolds number (Re) is increased

above a certain critical value. With a further increase in Re a third vortex is formed downstream of the smallest
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of the two main vortices [1]. Bifurcation phenomenon, consisting of a transition from symmetric to asymmetric

flow, occurs above a critical Reynolds number that depends on the expansion ratio of the planar expansion and

the rheology of the fluid. The expansion ratio for a planar geometry is defined as the ratio of height of the

outlet channel (H) to the height of the inlet channel (h) and henceforth is denoted as ER.

Since the early 1970s there has been a number of experimental studies devoted to the subject of flow bifur-

cation in channels with a sudden planar expansion. Using laser Doppler anemometry (LDA) Durst et al. [1]

examined the Newtonian fluid flow in a 1:3 planar symmetric expansion. In their experiments, two symmetric

vortices along the walls of the expansion were observed at Re = 56. At Re = 114, flow bifurcation was already

observed with vortices of unequal size forming at both salient corners. The experimental measurements of

Cherdron et al. (1978) [2] also relied on LDA, but were more comprehensive and explored the flow patterns and

instabilities in ducts with symmetric expansions, investigating also the effect of the aspect ratio of the tested

geometries. The more recent experimental and numerical study of Fearn et al. [3] in a 1:3 planar expansion

showed a similar flow bifurcation at a Reynolds number of 40.5. In contrast to the few experimental investiga-

tions, there is a large number of numerical works available in the literature and one of its advantages is that it

is possible to investigate truly 2D flows. In his numerical investigation on planar expansion flows with various

expansion ratios, Drikakis [4] found that the critical Reynolds number for the symmetry-breaking bifurcation

is reduced when the expansion ratio is increased. Battaglia and Papadopoulos [5] studied the influence of

three-dimensional effects on the bifurcation characteristics at low Reynolds number flows in rectangular sudden

expansions, in the range of 150 ≤ Re ≤ 600. All these experimental and numerical studies were concerned with

Newtonian fluids.

In many realistic situations the fluids flowing through flow devices are non-Newtonian and show complex

rheological behavior. Specifically, they can exhibit shear-thinning or shear-thickening viscosity depending on

the type of fluid and thus it is relevant to investigate the non-Newtonian fluid flow in planar expansions starting

with simple rheological models in order to independently assess the impact of specific rheological features upon

the flow characteristics. If the non-Newtonian solutions are not too concentrated the flows tend to have a

high Reynolds number, even leading to turbulent flow. Since the sudden expansion is a well-known geometry

for studies of laminar flow instabilities at high Reynolds numbers, in recent years it has naturally started to

attract the attention of researchers in the field of non-Newtonian fluid mechanics wishing to investigate the

complex interaction between these bifurcations and fluid rheology, namely viscoelasticity. In non-Newtonian

fluid mechanics there are other traditional benchmark flows, such as the 4:1 sudden contraction and the flow

around a confined cylinder under 50% blockage ratio, but these have been devised to address the numerical

convergence difficulties in creeping flows of viscoelastic fluids. Incidentally, computations of creeping flow of

viscoelastic fluids in sudden expansion geometries were found to be harder to converge than the more classical

sudden contraction flow [19]. As we show below, the investigations of power law fluids carried out so far in this

geometry provide an incomplete picture, which we aim to address in this work.

The non-Newtonian power-law model is the simplest model for a purely viscous fluid that can represent the

behavior of shear-shinning, shear-thickening and Newtonian fluids by varying the parameter of the model, n,
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known as the power-law index. Consequently, it comes as no surprise that several numerical studies in the past

were performed using the power-law viscosity model to study the flow of shear-thinning and shear-thickening

fluids in planar sudden expansions of various ER.

Mishra and Jayaraman [6] examined numerically and experimentally the asymmetric steady flow patterns of

shear-thinning fluids through planar sudden expansions with a large expansion ratio, ER= 16. Manica and De

Bortoli [7] studied numerically the flow of power-law fluids in a 1:3 planar sudden expansion for n = 0.5, 1 and

1.5. They presented the vortex characteristics for these values of n and for 30 ≤ Re ≤125, and observed that the

flow bifurcation for shear-thinning fluids occurs at a critical Reynolds number higher than for Newtonian fluids,

and that shear-thickening fluids exhibited the lowest critical Reynolds number. Considering again purely viscous

fluids represented by the power-law and Casson models, Neofytou [8] analyzed the transition from symmetric

to asymmetric flow of power-law fluids with power-law indices in the range 0.3 ≤ n ≤ 3 in a 1:2 planar sudden

expansion and also studied the effect of Reynolds number on the flow patterns.

Ternik et al. [9] studied the flow through a 1:3 planar symmetric expansion of non-Newtonian fluids with

shear-thickening behavior using the quadratic and power-law viscosity models. They compared the results of

both models with those of Newtonian fluids and concluded that the occurrence of flow asymmetry is greatly

affected by the shear-thickening behavior. Later, Ternik [10], computed the flow of shear-thinning fluids with

power-law indices n = 0.6 and 0.8 in a 1:3 planar sudden expansion. After the first bifurcation, from a symmetric

to asymmetric flow, a second flow bifurcation, marking the appearance of a third vortex, was predicted as

the generalized Reynolds number was further increased, with shear-thinning delaying the onset of this second

bifurcation. More recently, Ternik [11] revisited the generalized Newtonian flow in a two-dimensional 1:3 sudden

expansion using the open source OpenFOAM CFD software. The fluid was again represented by the power-law

model with power-law index in the range 0.6 ≤ n ≤ 1.4 and the simulations were performed for generalized

Reynolds numbers in the range 10−4 ≤ Regen ≤ 10 with the emphasis on the analysis of low Reynolds number

flows, below the critical conditions for the onset of the pitchfork bifurcation. Small recirculation, typical of

creeping flow (called the Moffatt vortices [12]) were observed for all fluids with shear-thinning behavior reducing

the size and intensity of the secondary flow.

Numerical simulations of the flow of power-law fluids in a planar 1:3 sudden expansion using commercial

or open source codes were attempted by several authors. It was found that the solution convergence is often a

major limitation when utilizing these codes especially when the non-Newtonian behavior is enhanced (large or

small n values for power-law model). For instance, Poole and Ridley [13] used FluentR© software to numerically

calculate the development-length required to attain fully developed laminar pipe flow of inelastic power-law

fluids and were unable to attain a converged solution for n < 0.4. Ternik [10] reported that the iterative

convergence had become increasingly time consuming with a reduction in power-law index, and for n < 0.6 no

converged solutions were obtained using the OpenFOAM software.

From the aforementioned discussion, it is clear that a comprehensive investigation on the flow of power-law

fluids in planar sudden expansions is still lacking for power-law indices below n = 0.6 and above n = 1.4 and this

is clearly seen in Figure 1. This work aims to fill this gap in the literature using an in-house finite-volume code
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[15]. We present a systematic study of the flow in a 1:3 sudden planar expansion for a wide range of power-law

indices, 0.2 ≤ n ≤ 4, and generalized Reynolds numbers, 0.01 ≤ Regen ≤600, including data for the Couette

correction. The critical generalized Reynolds numbers at which symmetry breaking flow bifurcation occurs is

reported and the flow structures in the expansion are visualized using streamline plots. We also compare the

results obtained with our in-house code with those calculated using the FluentR© 6.3.26 software using exactly

the same meshes and flow conditions. The remainder of this paper is organized as follows: in Section 2 we

present the mathematical formulation of the problem, and in Section 3 we discuss the numerical method along

with the code validation. The results are presented and discussed in Section 4, and Section 5 summarizes the

main conclusions.

2. Mathematical Formulation

2.1. Problem Description

The problem under study is illustrated schematically in Figure 2(a), which also includes the nomenclature

used to refer to the various characteristics lengths of the vortices. A 2D, long, planar channel of width h has a

sudden expansion to a second channel of width H, thus defining an expansion ratio ER = H/h = 3. The center

of the co-ordinate axes system lies at the center of the geometry expansion plane. The downstream channel has

a length LE = 200h and the upstream channel length is LC = 50h. The inlet of the computational domain is

located sufficiently far from the expansion plane in order for the inlet fluid flow to become fully developed well

before the expansion. Similarly, the outlet of the channel is located far from the region of interest where the

separating flow regions develop and exist.

2.2. Governing equations

The flow is considered to be laminar, steady and incompressible and the fluid in the channel flows in the

positive x−direction. This flow is governed by the continuity equation,

∂u

∂x
+
∂v

∂y
= 0 (1)

and the momentum equations, Momentum equations:

ρ

(
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+ u
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where u and v are the velocity components in the x and y directions, respectively, p is the pressure and ρ is the

density of the fluid. The power-law model is used, and the extra-stress tensor is calculated as

τij = 2η(γ̇)Dij (4)

where Dij = 1
2

(
∂uj

∂xj
+

∂uj

∂xi

)
is therate of deformation tensor (with ui = u or v and xi = x or y for i =1 and 2,

respectively), and the viscosity function is calculated as

η(γ̇) = Kγ̇n−1 (5)

with K being the consistency index and n the power-law index. Here, the shear rate, γ̇, is related to the second

invariant of the rate of deformation tensor (D) as

γ̇ =
√

2D : D =

√√√√2

(
∂u

∂x

)2

+ 2

(
∂v

∂y

)2

+

(
∂u

∂x
+
∂v

∂y

)2

(6)

According to the definition used in previous works with power-law fluid flows [10, 11] the generalized Reynolds

number used throughout this paper is defined based on the upstream channel height and bulk inlet velocity (u)

as

Regen =
6ρu(2−n)hn

K[(4n+ 2)/n]n
. (7)

3. Numerical procedure and validation

The governing equations (1)-(3) are solved using an in-house finite volume method and employing the SIM-

PLEC pressure correction algorithm formulated with the collocated variable arrangement [14]. These equations

are integrated in space and time over elementary control volumes, resulting in a set of linearized algebraic

equations. The CUBISTA high-resolution scheme [14] was used for discretizing the convective terms in the

momentum equations, which is formally of third order accuracy. The central difference scheme was used for

the discretization of diffusive terms, while a first-order implicit Euler scheme was used for the time deriva-

tives required by the time-marching procedure used to advance the numerical solution until steady state flow is

achieved. We note that we are only interested in steady state simulations and therefore the order of convergence

of the transient term is irrelevant since it will vanish when steady-state is approached. The set of linearized alge-

braic equations are solved using either a symmetric or a bi-conjugate gradient method, respectively for pressure

and velocities [15] with preconditioning by LU factorization. Iterations are continued until a divergence-free

velocity field is obtained. Convergence is assumed when the normalized summation of the residuals decreased

below 10−8 for all equations, which was checked to be sufficiently low by comparing with the solution obtained

with the more stringent convergence criterion of 10−10.

The computational domain is mapped by block-structured meshes and is partitioned into five blocks as

shown in Fig. 2b. In the streamwise direction the grids are stretched/compressed in geometric progression in
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each block, whereas in the transverse direction they are uniform. Grids are finer near the step of the expansion

(Fig. 2c) while they are coarser near the inlet and outlet. In order to check the grid dependence on the results,

four different grids were used, namely meshes A, B, C and D, as detailed in Table 1 which summarizes the

number of grid points (Nx, Ny), the factors (fx, fy) and the maximum and minimum size of the smallest grid

point used for each mesh (∆xmax/h, ∆ymax/h) in this study.

3.1. Boundary conditions

At the inlet a uniform velocity field is assumed. Since the inlet channel is very long, the flow will be fully

developed well upstream of the expansion plane. At the outlet, vanishing gradients are assumed for velocity

(∂u/∂x = ∂v/∂x = 0) while pressure is linearly extrapolated from the two upstream cells. On the walls no-slip

boundary conditions are applied, u = 0,v = 0.

3.2. Validation

Analysis of the vortex characteristics obtained at various Reynolds numbers (cf. Table 2) indicates that

nearly grid independent results, to within 0.2% of the refined Mesh D, could be obtained using Mesh C. As

such, the subsequent results were obtained with Mesh C, unless stated otherwise. In order to validate the

present code, extensive simulations have been performed and the results are compared with those available in

the literature and with FluentR© calculations. In the calculations using FluentR©, the convective terms were

discretized with the QUICK scheme [16] while the pressure-velocity coupling was enforced using standard

PISO algorithm [17]. Table 2 presents the vortex characteristics at n = 0.2, 0.6, 1, 1.4 and 4 obtained using our

numerical code, as well as those obtained using FluentR© for three different characteristic values of the generalized

Reynolds numbers representing each of the three different flow regimes. For the lower Regen considered, the

flow is symmetric, while the other two cases correspond to the asymmetric and the asymmetric with third eddy

regimes. The results obtained with our code are in good agreement with those predicted using FluentR© with

a maximum percentage error of less than 6% in the coarse mesh, and becoming more accurate as the meshes

are refined. Grid dependence tests carried out at the smallest and largest value of n considered here indicates

that a maximum uncertainty of 0.523% occurs at Mesh C when compared to mesh D for n = 0.2 and Regen =

420 which means that the current study with mesh C is sufficiently fine. Similar is the case for n = 4 with a

maximum percentage difference of 0.72% at Regen = 2.5 while comparing mesh C with D.

Plots of the dependence of vortex characteristics (Xa in case of symmetric flow and Xd in case of asymmetric

flow with a third eddy, cf. Figure 2a for definitions) with (∆xmin/h) are presented in Fig. 3 for n = 0.6 and

n = 1.4. It is clear from Fig. 3 that the solution converges to similar values when the mesh size (∆xmin/h)

gradually decreases. We note that for low and high n values FluentR© simulations did not fully converge to the

prescribed residual tolerance, as also reported by Poole and Ridley [13].

Figures 4, 5 and 6 compare our results for the power-law fluid flow in the 1:3 planar sudden expansion with

those available in the literature. Figure 4 reports the recirculation length (Xa/h) and the separation point

(Ya/h) obtained under creeping flow conditions (Regen = 0.01) for 0.6 ≤ n ≤ 1.4 and compares them with
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those of Ternik [11] revealing a good agreement. The variation of Xa/h and Ya/h for generalized Reynolds

numbers in the range 0.01 ≤ Regen ≤ 10 for 0.6 ≤ n ≤ 1.4, shown by lines in Fig. 5, again exhibits an excellent

agreement with the data of Ternik [11], which are represented as closed symbols. The present code has further

been validated by comparing the characteristic dimensions of vortices (Xa, Xb, Xc and Xd, cf. Fig. 2(a)) at n =

0.6, 0.8 and 1 with those of Ternik [10, 11] and Oliveira [18]. These comparisons are shown in the bifurcation

plots of Fig. 6 and the agreement is again very good.

4. Results and Discussion

In the validation section we showed the good quality of our predictions of the recirculation characteristics

of the various separated flow regions for the range of conditions available in the literature for power-law fluids.

In this section we present a comprehensive set of new results that extend currently available predictions to a

wider range of power-law indices and Regen as follows:

• Power-law index, n: 0.2, 0.4, 0.6, 0.8, 1, 1.4, 2, 3 and 4

• Generalized Reynolds number, Regen: 0.01 ≤ Regen≤ 600.

4.1. Flow characteristics under creeping flow conditions

Streamline plots are presented in Fig. 7 for nearly creeping flow conditions (Regen → 0). These calculations

were performed at Regen = 0.01 and 0.2 ≤ n ≤4. Under negligible inertia, the flow is always symmetric with

equal sized vortices on either side of the centerline. For compactness only half channel is shown for each flow

condition. It is clear that the recirculating eddies are small in size and grow with the power-law index, n. This is

shown more clearly as the variation of the vortex size Xa/h as a function of power-law index in Fig. 4(a) for the

creeping flow case (Regen = 0.01). When the power-law index, n, is varied from 0.2 to 1 a quasi-linear increase

in Xa/h is observed, but with a further increase in n the rise of, Xa/h progressively asymptotes to 0.796 for n >

3. A similar feature is observed for the point of separation (Ya/h) which is plotted in Fig. 4(b). Under creeping

flow conditions Ya/h linearly decreases with an increase in n from 0.2 to 1 and thereafter, asymptotically, tends

to a value of 0.54 indicating that the recirculation nearly reaches the step of the expansion (cf. Fig. 7). For

comparison, the correlations proposed by Ternik [11] are also displayed in the Figs. 4(a) and 3(b) showing that,

as per our finding, his correlations are only valid approximately in the range of 0.6 ≤ n ≤1.4. We present the

following correlations for Xa/h and Ya/h derived on the basis of our numerical predictions:

Xa

h
= 0.382 + 0.415tanh(1.142n− 0.775) (8)

Ya
h

= 1.03 + 0.49tanh(−1.72n+ 1.13) (9)
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The correlations are accurate to within 1.1% and 0.9% of the numerical predictions for Xa/h and Ya/h,

respectively for the entire range of n considered.

4.2. Vortex characteristics for non-negligible inertia

Figure 5(a) shows the variation of recirculation length in the streamwise direction, Xa/h, with generalized

Reynolds number in the range 0.01 ≤ Regen ≤ 10, for 0.2 ≤ n ≤ 4. For reference we have also included data

from Ternik [11]. At low values of Regen, Xa/h is constant for each value of n and increases with n. As inertia

becomes important Ya/h increases, with the value of Regen that marks the onset of inertia driven growth of

the recirculation progressively decreasing as n increases. The variation with n and Regen of the separation

point, Ya/h, at the step of the expansion is presented in Fig. 5(b). For shear-thinning fluids, the separation

point moves away from the sharp re-entrant corner, and hence Ya/h increases with decreasing n at a constant

value of Regen because the separated flow region weakens as is also clear from the visualization in Fig. 7. On

the contrary, for shear-thickening fluids the separation point moves towards the sharp corner and thus Ya/h

approaches the limiting value of 0.5 at large values of n. Since an increase in inertia leads to longer and stronger

recirculations, it comes as no surprise that regardless of the value of n, increasing the Reynolds number leads

to flow separation right at the corner. Consequently, increasing Regen from 0.01 to 10, results in a decrease in

Ya/h for all fluids and in particular for shear-thinning fluids. For shear-thickening fluids the variation is smaller,

since the recirculations are wider and Ya/h is already close to 0.5, but nevertheless a reduction to 0.5 is also

seen as n and Regen increase.

As already mentioned, the comparisons between our predictions and those of other authors shown in Figs.

6(a)-(c) are found to be in excellent agreement. This also includes the bifurcations observed in these figures,

which are explored in detail below.

The variation of recirculation length downstream of the expansion with the generalized Reynolds number

for the entire range investigated numerically is presented in Figs. 8(a)-(d) for different values of the power-law

index. Initially, at low generalized Reynolds numbers, the recirculating eddies are symmetric and grow with an

increase in the Reynolds number (their lengths along the walls are referred to as Xa and Xb as shown in Fig.2a).

When the generalized Reynolds number reaches a critical value (Regen,cr1) one vortex becomes longer than the

other (there is no preferred wall for this to happen, but for the sake of understanding we will consider that

Xa > Xb). With a further increase in Regen a third eddy appears on the side of the smaller of the two original

main eddies and is located further downstream. The critical Regen at which this third main eddy appears is

termed as the second critical Reynolds number, Regen,cr2. The distance from the step to the point where the

flow separates to form the third eddy is termed Xc and the distance from the step to the point where the flow

reattaches on the wall is termed Xd as sketched in Fig.2a.

For a Newtonian fluid (n = 1), the first critical Reynolds number is Regen,cr1= 54.5. Above this value

of Regen, the longer eddy (Xa) continues to grow in size while the smaller eddy decreases in size (Xb) up to

Regen ∝ 80. Beyond this value of Regen, Xa continues to increase and Xb starts to grow linearly with Regen,

but less intensively than the growth of Xa. At Regen = 102.2, the third eddy appears in agreement with the
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results of Oliveira [18], Ternik [10, 11]. Similar to Xa and Xb, the variations of Xc and Xd with Regen are

initially nonlinear but then become approximately linear above a certain value of Regen. Comparing the results

of Xa, Xb, Xc and Xd for n = 1 and n = 0.8, we find in Fig. 8(b) that shear-thinning delays all flow transitions.

For n = 0.8 the onset of asymmetry is delayed to a higher generalized Reynolds number of 74.1 and similarly,

the appearance of the third eddy (Regen,cr2) is also delayed to Regen = 158.3. Further decreasing the values of

power-law index, corresponding to stronger shear-thinning, results in further delayed flow transitions, shifting

the critical values (Regen,cr1 and Regen,cr2) to higher values as observed in Fig. 8(a, b). For example, for n =

0.4 we obtained Regen,cr1 =180.5 and Regen,cr2 = 484.

The picture for shear-thickening fluids, shown in Figs. 8(c, d), is consistent with the previous results, but

also shows some significant differences, especially for very strong shear-thickening behavior (n ≥ 3). In fact, by

increasing n, the flow bifurcation is now anticipated to lower values of Regen. The critical value, Regen,cr1 =

54.5 found for n = 1, and it is reduced to Regen,cr1 = 30 for n =1.4. Moreover, the shape of the variation of

Xa and Xb with Regen beyond Regen,cr1 looks different from the Newtonian and shear-thinning cases, although

for n = 1.4 we still observe the initial nonlinear variation and decrease of Xb immediately above Regen,cr1,

followed by an increase. Note also that the onset of the third eddy appears very quickly, with Regen,cr2 close to

Regen,cr1. Also, and unlike the Newtonian and shear thinning fluid cases, the size of third recirculation eddy

increases significantly with an increase in Regen. Increasing the power-law index further to n = 2, 3 and 4

induces flow asymmetry at even lower values of Regen and it is interesting to note from Fig. 8(d) for n ≥ 3

that Xb becomes nearly constant and no longer increases with Regen, but instead it starts to reduce in size

above Regen,cr2. Actually, except for the size of the third eddy, all other characteristics lengths (Xa, Xb and Xc)

decrease with Reynolds number above Regen,cr2. Also, the size of the third recirculating eddy is much larger

compared to other cases.

The variation of the two critical generalized Reynolds numbers, Regen,cr1 and Regen,cr2, as a function of

n are presented in Fig. 9 where we map different flow pattern types including symmetric, asymmetric and

asymmetric with third eddy. In the figure we use different symbols to easily demarcate different flow regimes.

It is evident in Fig. 9 that shear-thinning stabilizes the flow by raising significantly the two critical generalized

Reynolds numbers, as already pointed out, and also by increasing the difference between the two critical points.

In agreement with this, increasing the power-law index above the Newtonian value reduces significantly Regen,cr1

and Regen,cr2 . In fact, for n = 0.4 we have Regen,cr1 = 180.4 and Regen,cr2 = 461.3, which reduce to Regen,cr1

= 5.1 and Regen,cr2 = 5.9 for n = 3. We present the following correlations derived based on the calculated

numerical data for Regen,cr1 and Regen,cr2 , which are accurate to within 2% of numerical data:

Regen,cr1 =
105

sinh(1.5n)
+

6

cosh(0.5n)
(10)

Regen,cr2 =
605

sinh(3n)
+

6

cosh(n)
(11)
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To illustrate the flow patterns in different regimes, the streamline plots are depicted in Fig. 10 for shear-

thinning and in Fig. 11 for Newtonian and shear-thickening fluids at three different generalized Reynolds

numbers pertaining to the symmetric, asymmetric and third eddy regimes. Since there is a strong variation of

Regen,cr1 and Regen,cr2 with n, the values of generalized Reynolds numbers used in Figs. 10 and 11 are not the

same but they are qualitatively the same in the following sense: for the symmetric regime we considered a value

of Regen = 0.8 Regen,cr1 , for the asymmetric regime we considered a Reynolds number of Regen = 0.5(Regen,cr1

+ Regen,cr2) and for the third eddy regime we used Regen = 1.2 Regen,cr2. For the shear-thinning fluids, with

decreasing value of n, the sizes of the vortices are found to be larger, whereas for the shear-thickening fluids,

the case is reversed. With an increasing value of n, comparing the plots at any of the three different regimes

one can find that the vortex size slightly increases with increasing n, as seen in Fig. 11(a)-(c). Comparing the

streamline patterns for the shear-thinning and shear-thickening cases, we observe that the eddies are stretched

along the walls with enhanced shear-thickening behavior, while when shear-thinning becomes more pronounced,

the eddies are more curved along the walls.

4.3. Couette correction

The Couette correction, C, represents the excess pressure drop associated with the flow redevelopment at

the expansion, normalized with the average fully developed downstream wall shear stress, τwall:

C =
∆P − (∆Pfd,uc + ∆Pfd,dc)

τwall
(12)

where, ∆P is the real global pressure drop across the expansion, between two points A and B far upstream and

downstream of the expansion plane, to ensure that they are well within the regions of fully-developed channel

flow, ∆Pfd,uc is the estimated pressure drop between point A and the expansion plane assuming fully-developed

flow, and ∆Pfd,dc is the estimated pressure drop between the expansion plane and the point B also assuming

fully-developed flow conditions. Figure 12 depicts the variation of Couette correction as a function of Regen in

the range 0.01 ≤ Regen ≤ 10 for different values of n. Comparison of the present data with those of Ternik

[11] for 0.6 ≤ n ≤ 1.4 are found to be in excellent agreement. The Couette correction plateaus for all values

of n for 0.01 ≤ Regen ≤ 0.1, while for Regen > 0.1 the Couette correction starts to decrease with increasing

Regen and tends to negative values. Direct inspection of Eq. (12) shows that in this case the real pressure

loss through the expansion is less than the estimated for fully developed flow, but a more in depth analysis

shows the real meaning of a negative C to be that the pressure recovery as the fluid goes through the expansion

actually exceeds the viscous losses. Additionally, we find that for a constant value of of Regen, increasing n

leads to a decrease in the value of C. For Regen > 10 we find that C varies linearly but in inverse proportion to

Regen an indication that the flow is becoming dominated by inertia with a negative slope due to the decrease of

the kinetic energy across the expansion plane (∆pkin ∝ -u2; τwall ∝ u; ∆pext/τwall ∝ -Regen, where the excess

pressure drop (∆pext) is the numerator of equation 12).
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5. Summary and Conclusion

We have performed a systematic numerical study on the flow of power-law fluids through a 1:3 planar sudden

expansion. Using our finite volume code, we were able to obtain convergence for a much wider range of flow

conditions than previously attained in numerical works for power-law fluids. Specifically, we obtained results in

the power-law index range 0.2 ≤ n ≤ 4. We restricted the analysis to such range of n, not because there were

convergence difficulties, but because real fluids will hardly behave outside this range.

The following are some of the main conclusions of this study:

1. The flow is steady for the whole range of Regen and power-law index, n, investigated. The flow is strongly

dependent on the power-law index, as significant changes in flow behavior occur with varying n values.

2. In the creeping flow limit (Re →0), Moffatt eddies appear and gradually increase in size with increasing

n and asymptotically reach a constant value above n ≈ 3. The separation point, Ya/h moves towards the

sharp corner with an increase in the power-law index, and reaches a constant value at high values of n.

3. Flow bifurcation is delayed for shear-thinning fluids (n < 1) when compared to the Newtonian fluids (n =

1) while this phenomenon occurs earlier in the case of shear-thickening fluids (n >1). Thus, the critical

Reynolds number at which asymmetry is observed increases as n decreases.

4. The recirculating eddies along the walls become more stretched as the shear-thickening behavior is en-

hanced, while they become more curved when the shear-thinning behavior is enhanced.

Additionally we provide benchmark quality data for this wide range of flow and fluid conditions for such

properties as the vortex length characteristics (Xa, Xb, Xc, Xd and Ya) and for the two critical Reynolds numbers

marking the onset of the first transition from symmetric to asymmetric flow and marking the second transition

from asymmetric flow to asymmetric flow with a third vortex.
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Table 1: Computational domain and mesh characteristics of the 1:3 sudden planar expansion geometry.

Mesh Block Nx ×Ny fx fy ∆xmin/h ∆ymin/h

Mesh A

I 72 × 13 0.9531 1.0

II 35 × 39 1.01960 1.0

III 38 × 39 1.0000 1.0 0.08 0.08

IV 63 × 39 1.0204 1.0

V 75 × 39 1.0328 1.0

Mesh B

I 144 × 25 0.9763 1.0

II 70 × 75 1.0098 1.0

III 76 × 75 1.0000 1.0 0.04 0.04

IV 126 × 75 1.0101 1.0

V 150 × 75 1.0158 1.0

Mesh C

I 144 × 25 0.9881 1.0

II 70 × 75 1.0049 1.0

III 76 × 75 1.0000 1.0 0.02 0.02

IV 126 × 75 1.0051 1.0

V 150 × 75 1.0079 1.0

Mesh D

I 576 × 102 0.9940 1.0

II 280 × 306 1.0024 1.0

III 304 × 306 1.0000 1.0 0.01 0.01

IV 504 × 306 1.0025 1.0

V 600 × 306 1.0039 1.0
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Table 2: Mesh dependence tests and comparisons with Fluent for the same parameters at different n..

(a) n = 0.2

Present calculations

Regen = 200 Regen = 420 Regen = 600

Xa/h Xb/h Xa/h Xb/h Xa/h Xb/h

Mesh A 4.1407 4.1407 12.6618 4.9030 19.4215 5.7361

Mesh B 4.1956 4.1956 12.8926 4.9829 19.6939 5.8058

Mesh C 4.2451 4.2451 13.8157 5.0231 19.7560 5.8302

Mesh D 4.2543 4.2543 13.8880 5.0443 19.7775 5.8418

(b) n = 0.6

Present calculations

Regen = 90 Regen = 180 Regen = 360

Xa/h Xb/h Xa/h Xb/h Xa/h Xb/h Xa/h Xb/h

Mesh A 4.7456 4.7456 12.3070 4.1773 19.6293 5.0612 17.2218 26.6961

Mesh B 4.8000 4.8000 12.4731 4.2488 20.3754 5.2192 18.0315 27.0220

Mesh C 4.8599 4.8599 12.5133 4.2651 20.5289 5.2589 18.1721 27.1130

Mesh D 4.8652 4.8652 12.5426 4.2815 20.5426 5.2715 18.1926 27.1250

Fluent calculations

Mesh A 4.6094 4.6094 12.1364 4.0821 19.5867 4.9382 17.6233 26.2325

Mesh B 4.6993 4.6993 12.3259 4.2003 20.2350 5.1555 18.0885 26.6610

Mesh C 4.7843 4.7843 12.3935 4.2388 20.4223 5.2219 18.1769 26.8011

Mesh D 4.8448 4.8448 12.4256 4.2544 20.4649 5.2425 18.1753 26.8552

.

(c) n = 1

Present calculations

Regen = 50 Regen = 70 Regen = 120

Xa/h Xb/h Xa/h Xb/h Xa/h Xb/h Xa/h Xb/h

Mesh A 5.0633 5.0633 9.0012 3.6573 12.7426 3.9197 11.1772 16.7932

Mesh B 5.0739 5.0739 9.0291 3.6741 12.8490 3.9551 11.2838 16.8711

Mesh C 5.0824 5.0824 9.0427 3.6744 12.8674 3.9620 11.2967 16.8950

Mesh D 5.0873 5.0873 9.0495 3.6742 12.8721 3.9643 11.2647 16.9065

Fluent calculations

Mesh A 4.8497 4.8497 8.8466 3.5328 12.6328 3.7859 11.6557 17.5246

Mesh B 4.9681 4.9681 8.9479 3.6139 12.7920 3.8893 11.5264 16.6664

Mesh C 5.0361 5.0366 9.0030 3.6461 12.8426 3.9322 11.4155 16.7913

Mesh D 5.0585 5.0585 9.0011 3.6672 12.8376 3.9452 11.3332 16.8611
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.

(d) n = 1.4

Present calculations

Regen = 20 Regen = 40 Regen = 65

Xa/h Xb/h Xa/h Xb/h Xa/h Xb/h Xa/h Xb/h

Mesh A 3.6438 3.6438 8.9890 3.5175 11.1289 3.5898 9.1607 17.1619

Mesh B 3.6473 3.6473 8.9963 3.5163 11.2032 3.5984 9.2285 17.1161

Mesh C 3.6519 3.6519 8.8895 3.5190 11.2023 3.6009 9.2261 17.1081

Mesh D 3.6550 3.6550 9.0006 3.5190 11.2047 3.6246 9.2315 17.1019

Fluent calculations

Mesh A 3.4387 3.4387 8.7974 3.3281 10.9914 3.4189 9.5822 16.7157

Mesh B 3.5376 3.5374 8.8890 3.4352 11.1210 3.5213 9.4434 16.8762

Mesh C 3.5970 3.5972 8.9042 3.4805 11.1744 3.5674 9.3350 17.0105

Mesh D 3.6260 3.6260 8.9742 3.5002 10.2272 3.6241 8.5892 17.0685

.

(e) n = 4

Present calculations

Regen = 0.5 Regen = 2.5

Xa/h Xb/h Xa/h Xb/h

Mesh A 3.8113 3.8113 11.1927 5.7675

Mesh B 3.8881 3.8881 11.5124 5.9253

Mesh C 3.9236 3.9236 11.6652 5.9972

Mesh D 3.9450 3.9450 11.7498 6.0364
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8. Figures
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Figure 1: Graphical illustration of the range of generalised Reynolds numbers (Regen and power-law induced (n) used in various
studies in the archival literature.
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Figure 2: Illustration of (a) two-dimensional 1:3 sudden planar expansion geometry considered in the study and (b) Blocks that
were used; (c) Mesh distribution near the expansion plane (Mesh C, -2 ≤ x ≤ 6 and -1.5 ≤ y ≤ 1.5).
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(a)

(b)

Figure 3: Dependence of vortex characteristics (Xa and Xd in case of symmetric flow and asymmetric flow with a third eddy,
respectively) on the smallest grid size (∆xmin/h) corresponding to different meshes obtained with our code and Fluent :(a) n =
0.6 and (b) n = 1.4.
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(a)

(b)

Figure 4: Comparison of present predictions of vortex size with those of Ternik [12] for power-law index in the range 0.6 ≤ n ≤ 1.4
at Regen = 0.01.
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(a)

(b)

Figure 5: Variation of the main vortex characteristics with the generalized Reynolds number (0.01≤ Regen ≤ 10) at different
power-law index in the range 0.2 ≤ n ≤ 4: (a) Xa/h and (b) Ya/h. Legend in (a) is also applicable to (b).
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(a)

(b)

Figure 6: Variation of vortex size with generalized Reynolds number at n = 0.6 and 1 for the power-law fluid flow in a 1:3 planar
sudden expansion and comparison with the available literature data.
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Figure 7: Flow patterns obtained under creeping flow conditions (Regen = 0.01) at different power-law index in the range 0.2≤ n ≤4.
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(a) (b)

(c) (d)

Figure 8: Variation of vortex size with Regen at different values of power-law index: (a) n = 0.2, 0.4 and 0.6; (b) n = 0.8 and 1;
(c) n = 1.4 and 2 and (d) n = 3 and 4.
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Figure 9: : Effect of power-law index on the critical generalized Reynolds numbers at which flow bifurcation occurs (Regen,cr1)
and at which a tertiary recirculating eddy appears (Regen,cr2). Maps of the three flow patterns are shown by different symbols.
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(a)

(b)

(c)

Figure 10: Flow patterns in the 1:3 planar sudden expansion at three different regimes are shown for each case: (i) symmetric
flow (Regen = 0.8 Regen,cr1); (ii) asymmetric flow [Regen = 0.5(Regen,cr1 + Regen,cr2)] and (iii) asymmetric flow with a third
recirculating eddy (Regen = 1.2 Regen,cr2) at different power-law index values: (a) n = 0.4 ; (b) n = 0.6; (c) n = 0.8.
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(a)

(b)

(c)

Figure 11: Flow patterns in the 1:3 planar sudden expansion at three different regimes are shown for each case: (i) symmetric
flow (Regen = 0.8 Regen,cr1); (ii) asymmetric flow [Regen = 0.5(Regen,cr1 + Regen,cr2)] and (iii) asymmetric flow with a third
recirculating eddy (Regen = 1.2 Regen,cr2) at different power-law index values: (a) n = 1 ; (b) n =1.4; (c) n = 2.
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(a)

(b)

Figure 12: Variation of Couette correction, C, with the generalized Reynolds number (Regen) for various values of power-law index.
When available, comparison with data from Ternik [12] is also presented: (a) Low range of generalized Reynolds numbers and (b)
Higher range of generalized Reynolds numbers.
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