Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Towards an assessment of power system frequency support from wind plant-modeling aggregate inertial response

Wu, Lei and Infield, David (2013) Towards an assessment of power system frequency support from wind plant-modeling aggregate inertial response. IEEE Transactions on Power Systems, 28 (3). 2283 - 2291. ISSN 0885-8950

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

With increasing wind penetration, it is likely that wind power plant will be expected to provide frequency response in support of the power system, in particular some form of inertial response. In these circumstances it is important to accurately quantify the type of inertial response available from wind plant (typically a wind farm) and how it is affected by varying wind conditions. Two different control schemes to provide this “synthetic” inertial response are investigated. The benefits of the non-standard control scheme are demonstrated by comparing the response with the conventional “ideal” inertial control scheme that exactly emulates synchronous generators in terms of their provision of inertial response. This paper proposes a novel probabilistic approach for estimation of the aggregate inertial response available from a wind farm by using a Gaussian probability distribution to model wind turbulence. The aggregate inertial response calculated in this way has been examined at various mean wind speed levels and has the advantage that it automatically takes into account wind speed variations during the transient event itself.