Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Wind turbine generator condition-monitoring using temperature trend analysis

Guo, Peng and Infield, David and Yang, Xiyun (2012) Wind turbine generator condition-monitoring using temperature trend analysis. IEEE Transactions on Sustainable Energy, 3 (1). pp. 124-133. ISSN 1949-3029

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Condition monitoring can greatly reduce the maintenance cost for a wind turbine. In this paper, a new condition-monitoring method based on the nonlinear state estimate technique for a wind turbine generator is proposed. The technique is used to construct the normal behavior model of the electrical generator temperature. A new and improved memory matrix construction method is adopted to achieve better coverage of the generator's normal operational space. Generator incipient failure is indicated when the residuals between model estimates and the measured generator temperature become significant. Moving window averaging is used to detect statistically significant changes of the residual mean value and standard deviation in an effective manner; when these parameters exceed predefined thresholds, an incipient failure is flagged. Examples based on data from the Supervisory Control and Data Acquisition system at a wind farm located at Zhangjiakou in northern China have been used to validate the approach and examine its sensitivity to key factors that influence the performance of the approach. It is demonstrated that the technique can identify dangerous generator over temperature before damage has occurred that results in complete shutdown of the turbine.