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Abstract

We tackle the problem of defining a well-founded seman-
tics for Datalog rules with existentially quantified variables
in their heads and negations in their bodies. In particular,
we provide a well-founded semantics (WFS) for the recent
Datalog± family of ontology languages, which covers sev-
eral important description logics (DLs). To do so, we gen-
eralize Datalog± by non-stratified nonmonotonic negation in
rule bodies, and we define a WFS for this generalization via
guarded fixed-point logic. We refer to this approach as equal-
ity-friendly WFS, since it has the advantage that it does not
make the unique name assumption (UNA); this brings it close
to OWL and its profiles as well as typical DLs, which also do
not make the UNA. We prove that for guarded Datalog± with
negation under the equality-friendly WFS, conjunctive query
answering is decidable, and we provide precise complexity
results for this problem. From these results, we obtain pre-
cise definitions of the standard WFS extensions of EL and
of members of the DL-Lite family, as well as correspond-
ing complexity results for query answering.

Introduction
The recent Datalog± family of ontology languages (Calı̀,
Gottlob, and Lukasiewicz 2012) extends plain Datalog by
the possibility of existential quantification in rule heads and
other features, and simultaneously restricts the rule syntax to
achieve tractability. The following example illustrates how
description logic (DL) knowledge bases are expressed in
Datalog±.

Example 1 (Literature) A DL knowledge base consists of
a TBox and an ABox. For example, the knowledge that every
conference paper is an article and that every scientist is the
author of at least one paper can be expressed by the two ax-
ioms ConferencePapervArticle and Scientistv∃isAuthor-
Of in the TBox, respectively, while the knowledge that
John is a scientist can be expressed by the axiom
Scientist(john) in the ABox. In Datalog±, the former are en-
coded as the rules ConferencePaper(X) → Article(X) and
Scientist(X)→∃Y isAuthorOf(X,Y ), respectively, and the
latter is encoded by an identical fact in the database. Fur-
thermore, the TBox axiom ConferencePaperv¬Journal-
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Paper, encoding that conference papers are not journal pa-
pers, can be expressed in Datalog± by the negative con-
straint ConferencePaper ∧ JournalPaper → ⊥. A simple
Boolean conjunctive query (BCQ) asking whether John au-
thors a paper is ∃X isAuthorOf(john, X).

The Datalog± languages bridge an apparent gap in ex-
pressive power between database query languages and DLs
as ontology languages, extending the well-known Data-
log language in order to embed DLs. They also allow for
transferring important concepts and proof techniques from
database theory to DLs. For example, it was so far not clear
how to enrich tractable DLs by the feature of nonmonotonic
negation. By the results of (Calı̀, Gottlob, and Lukasiewicz
2012), DLs can be enriched by stratified negation via map-
pings from DLs to Datalog± with stratified negation, which
is defined and studied in that paper. Given that stratified
negation is quite limited, we wondered whether the richer
and more expressive well-founded negation could be defined
for Datalog±. The well-founded semantics (WFS) for nor-
mal (logic) programs (van Gelder, Ross, and Schlipf 1991)
is one of the most widely used semantics for nonmonotonic
normal programs, it is the standard semantics for such pro-
grams for database applications, and it is thus especially un-
der a data-oriented perspective of great importance for the
Web. Having many nice features, the WFS is defined for all
normal programs (i.e., logic programs with the possibility of
negation in rule bodies), has a polynomial data tractability,
approximates the answer set semantics, and coincides with
the canonical model in case of stratified normal programs.

In this paper, we concentrate on the important problem
of defining a WFS for (unrestricted) normal Datalog±, i.e.,
Datalog with existentially quantified variables in rule heads
and negations in rule bodies. This new semantics is called
the equality-friendly WFS (EFWFS), since it has the crucial
advantage that it does not make the unique name assumption
(UNA); this brings it close to OWL and its profiles as well
as typical DLs, which also do not make the UNA.

Since (unrestricted) normal Datalog± generalizes posi-
tive Datalog±, consistency checking and query answering
in it is in general undecidable. However, it turns out that
the guarded fragment of normal Datalog± can be translated
to guarded fixed point logic, which is a well-studied decid-
able formalism. Through this translation, we thus obtain the
decidability of consistency checking and query answering



in guarded normal Datalog±. Furthermore, we obtain upper
complexity bounds, which are then also shown to be tight.

Guarded Datalog± covers in particular the DLs EL and
DL-LiteR (which is underlying the OWL 2 QL profile).
Therefore, our decidability results and upper complexity
bounds carry over to these DLs. The following example il-
lustrates how the WFS can be extended to such DLs.

Example 2 (Holidays) Consider an ABox containing three
holiday destinations Dest(d1), Dest(d2), and Dest(d3).
Suppose that any destination that offers the opportunity to
swim needs either direct access to the beach (Beach(x))
or a bus connection to some beach (BeachBus(x, y)). That
is, at destinations where swimming is possible, we want to
make sure that never both notBeach and not∃BeachBus
hold. This can be achieved by the following two rules:

Dest u Swimming u notBeach v ∃BeachBus; (1)
Dest u Swimming u not∃BeachBus v Beach. (2)

Observe also that notSwimming(d) would immediately im-
ply notBeach(d) and not∃BeachBus(d), since it would
make it impossible that either of the two axioms could be
applied to derive new facts about d.

The following example shows a case where not making
the UNA is more appropriate than making it under the WFS.

Example 3 (Company) Suppose we are given certain facts
about employees and their employers. The following two
concept membership axioms state that John and Sam are
employees: Employee(John), Employee(Sam). To these
axioms, we add a concept inclusion axiom that maintains
that every employee must have an employer: Employee v
∃.hasEmployer . Finally, we would like to test whether
or not John and Sam work in the same company, which
is expressed by the query ∃x(hasEmployer(John, x) u
not hasEmployer(Sam, x)). Then, under the UNA, equal-
ity between all individuals (including new ones) is mini-
mized, and we evaluate the query to true, which is not the
case without UNA, where different Skolem terms may be
interpreted by the same object.

Preliminaries
In this section, we briefly recall some basics on Datalog±
(Calı̀, Gottlob, and Lukasiewicz 2012), namely, on relational
databases, conjunctive queries (CQs), Boolean conjunctive
queries (BCQs), tuple-generating dependencies (TGDs),
negative constraints, and normal TGDs and BCQs.

Databases and Queries. We assume (i) an infinite uni-
verse of (data) constants ∆ (which constitute the “normal”
domain of a database), and (ii) an infinite set of variables V
(used in queries and constraints). We denote by X sequences
of variables X1, . . . , Xk with k > 0. We assume a rela-
tional schema R, which is a finite set of relation names
(or predicate symbols, or simply predicates). A position
P [i] identifies the i-th argument of a predicate P . A term t
is a constant or variable. An atomic formula (or atom) a
has the form P (t1, ..., tn), where P is an n-ary predicate,

and t1, ..., tn are terms. A conjunction of atoms is often iden-
tified with the set of all its atoms.

A database (instance) D for a relational schema R is a
(possibly infinite) set of atoms with predicates from R and
arguments from ∆. A conjunctive query (CQ) over R has
the form Q(X) = ∃Y Φ(X,Y), where Φ(X,Y) is a con-
junction of atoms with the variables X and Y, and eventu-
ally constants. Note that Φ(X,Y) may also contain equal-
ities but no inequalities. A Boolean CQ (BCQ) over R is a
CQ of the form Q(). We often write a BCQ as the set of all
its atoms, having constants and variables as arguments, and
omitting the quantifiers. Answers to CQs and BCQs are de-
fined via homomorphisms, which are mappings µ : ∆∪V →
∆∪V such that (i) c ∈ ∆ implies µ(c) = c, and (ii) µ is nat-
urally extended to atoms, sets of atoms, and conjunctions of
atoms. The set of all answers to a CQ Q(X) =∃Y Φ(X,Y)
over a database D, denoted Q(D), is the set of all tu-
ples t over ∆ for which there exists a homomorphism
µ : X∪Y→∆ such that µ(Φ(X,Y))⊆D and µ(X) = t.
The answer to a BCQ Q() =∃Y Φ(Y) over a database D
is Yes, denoted D |=Q, iff Q(D) 6= ∅, i.e., there is a homo-
morphism µ : Y→∆ ∪∆N such that µ(Φ(Y))⊆D.

Tuple-Generating Dependencies (TGDs). Tuple-genera-
ting dependencies (TGDs) describe constraints on databases
in the form of generalized Datalog rules with existentially
quantified conjunctions of atoms in rule heads; their syntax
and semantics are as follows. Given a relational schema R,
a tuple-generating dependency (TGD) σ is a first-order for-
mula of the form ∀X∀Y Φ(X,Y)→ ∃ZΨ(X,Z), where
Φ(X,Y) and Ψ(X, Z) are conjunctions of atoms over R,
called the body and the head of σ, denoted body(σ) and
head(σ), respectively. Such σ is satisfied in a database D
for R iff, whenever there is a homomorphism h that maps
the atoms of Φ(X,Y) to atoms of D, there is an extension
h′ of h that maps the atoms of Ψ(X,Z) to atoms ofD. Since
TGDs can be reduced to TGDs with only single atoms in
their heads, in the sequel, every TGD has w.l.o.g. a single
atom in its head. A TGD σ is guarded iff it contains an atom
in its body that contains all universally quantified variables
of σ. The leftmost such atom is the guard of σ.

Query answering under TGDs, i.e., the evaluation of CQs
and BCQs on databases under a set of TGDs is defined as
follows. For a database D forR, and a set of TGDs Σ onR,
the set of models of D and Σ, denoted mods(D,Σ), is the
set of all (possibly infinite) databases B such that (i) D⊆B
(ii) every σ ∈Σ is satisfied in B. The set of answers for a
CQ Q to D and Σ, denoted ans(Q,D,Σ), is the set of all
tuples a such that a ∈ Q(B) for all B ∈mods(D,Σ). The
answer for a BCQQ toD and Σ is Yes, denotedD∪Σ |=Q,
iff ans(Q,D,Σ) 6= ∅. Note that query answering under gen-
eral TGDs is undecidable (Beeri and Vardi 1981), even with
fixed schema and TGDs (Calı̀, Gottlob, and Kifer 2008).

Negative Constraints. Another crucial ingredient of Da-
talog± for ontological modeling are negative constraints (or
simply constraints), which are first-order formulas of the
form ∀XΦ(X)→ ⊥, where Φ(X) is a conjunction of atoms



(not necessarily guarded), called its body. We usually omit
the universal quantifiers, and we implicitly assume that all
sets of constraints are finite here.

Normal TGDs and BCQs. Normal TGDs are TGDs that
may also contain (default-)negated atoms in their bodies:
Given a relational schema R, a normal TGD (NTGD) has
the form ∀X∀Y Φ(X,Y)→∃ZΨ(X, Z), where Φ(X,Y)
is a conjunction of atoms and negated atoms over R, and
Ψ(X,Z) is a conjunction of atoms over R. It is also abbre-
viated as Φ(X,Y) → ∃ZΨ(X,Z). As for standard TGDs,
w.l.o.g., Ψ(X,Z) is a singleton atom. We denote by head(σ)
the atom in the head of σ, and by body+(σ) and body−(σ)
the sets of all positive and negative (“¬”-free) atoms in the
body of σ, respectively. We say σ is guarded iff it contains a
positive body atom, denoted guard(σ), that contains all uni-
versally quantified variables of σ. W.l.o.g., constants in the
body of guarded σ occur only in guards. We say σ is linear
iff σ is guarded and has exactly one positive atom in its body.

As for the semantics, a normal TGDs σ is satisfied in a
database D for R iff, whenever there exists a homomor-
phism h for all the variables and constants in the body of σ
that maps (i) all atoms of body+(σ) to atoms ofD and (ii) no
atom of body−(σ) to atoms of D, then there exists an exten-
sion h′ of h that maps all atoms of head(σ) to atoms of D.

We next add negation to BCQs as follows. A normal Bool-
ean conjunctive query (NBCQ) Q is an existentially closed
conjunction of atoms and negated atoms

∃X p1(X)∧ · · · ∧ pm(X)∧¬pm+1(X)∧ · · · ∧¬pm+n(X),

where m> 1, n> 0, and the variables of the pi’s are among
X. We denote byQ+ (resp.,Q−) the set of all positive (resp.,
negative (“¬”-free)) atoms of Q. We say Q is safe iff ev-
ery variable in a negative atom in Q also occurs in a posi-
tive atom in Q. We say Q is covered iff for every negative
atom α in Q, there exists a positive atom β in Q such that
every argument in α occurs in β. Observe that the covered-
ness of Q implies also the safeness of Q, but not vice versa.
In the sequel, w.l.o.g., BCQs contain no constants.

Note that normal non-Boolean CQs over finite databases
can be reduced to constant-free NBCQs, by first reducing
them to NBCQs with constants, and then moving their con-
stants into the TGDs by introducing new predicate symbols.

Equality-Friendly WFS for Datalog±

In this section, we first recall the syntax of normal programs
(with function symbols) and their well-founded semantics
(WFS). As a central new contribution, we then introduce a
WFS of normal Datalog± programs without the UNA.

Syntax of Normal Programs. Let Φ be a first-order vo-
cabulary with nonempty finite sets of constant, function, and
predicate symbols. Let V be a set of variables. A term is
either a variable from V , a constant symbol from Φ, or of
the form f(t1, . . . , tn), where f is a function symbol of ar-
ity n> 0 from Φ, and t1, . . . , tn are terms. An atom is of
the form p(t1, . . . , tn), where p is a predicate symbol of
arity n> 0 from Φ, and t1, . . . , tn are terms. A literal l is

an atom p or a negated atom ¬p. A normal rule (or simply
rule) r is of the form

β1, . . . , βn,¬βn+1, . . . ,¬βn+m → α , (3)

where α, β1, . . . , βn+m are atoms and m,n > 0. We
call α the head of r, denoted H(r), while the conjunc-
tion β1, . . . , βn,¬βn+1, . . . ,¬βn+m is its body. We define
B(r) =B+(r)∪B−(r), where B+(r) = {β1, . . . , βn} and
B−(r) = {βn+1, . . . , βn+m}. A rule of the form (3) with
m=n= 0 is also called a fact. A normal program P is a
finite set of normal rules (3).

WFS of Normal Programs. The WFS (van Gelder, Ross,
and Schlipf 1991) is the most widely used semantics for non-
monotonic normal programs, it is the standard semantics for
such programs for database applications, and it is thus espe-
cially under a data-oriented perspective of great importance
for the Web. The WFS of normal programs P has many dif-
ferent equivalent definitions (see also (Baral and Subrahma-
nian 1993)). We recall here the one based on unfounded sets,
via the operators UP , TP , and WP .

We first give some preliminary definitions. The Herbrand
universe of a normal program P , denoted HU P , is the set
of all terms constructed from constant and function symbols
appearing in P . If there is no such constant symbol, then we
take an arbitrary constant symbol from Φ. As usual, terms,
atoms, literals, rules, programs, etc. are ground iff they do
not contain any variables. The Herbrand base of a normal
program P , denoted HBP , is the set of all ground atoms
that can be constructed from the predicate symbols appear-
ing in P and the ground terms in HU P . A ground instance
of a rule r∈P is obtained from r by uniformly replacing
every variable that occurs in r by a ground term from HU P .
We denote by ground(P ) the set of all ground instances of
rules in P . For literals `= a (resp., `=¬a), we use ¬.` to
denote ¬a (resp., a), and for sets of literals S, we define
¬.S = {¬.` | `∈S} and S+ = {a∈S | a is an atom}. We
denote by LitP =HBP ∪ ¬.HBP the set of all ground lit-
erals with predicate symbols from P and ground terms from
HU P . A set of ground literals S⊆LitP is consistent iff
S ∩ ¬.S= ∅. A (three-valued) interpretation relative to P
is any consistent set of ground literals I ⊆LitP .

We next define the notion of an unfounded set. A set U ⊆
HBP is an unfounded set of P relative to I ⊆LitP iff for
every a∈U and every r∈ ground(P ) with H(r) = a, either
(i) ¬b∈ I ∪¬.U for some atom b∈B+(r), or (ii) b∈ I for
some atom b∈B−(r). There exists the greatest unfounded
set of P relative to I , denoted UP (I). Intuitively, it collects
all those atoms that cannot become true when extending I
with further information. We are now ready to define the
two operators TP and WP on consistent I ⊆LitP by:
• TP (I) = {H(r) | r∈ground(P ), B+(r)∪¬.B−(r)⊆ I};
• WP (I) =TP (I)∪¬.UP (I).
Since WP is monotonic, it has a least fixed point, denoted
lfp(WP ), which is the well-founded semantics (WFS) of P ,
denoted WFS (P ). Intuitively, starting with I = ∅, rules are
applied to obtain new positive and negated facts (via TP (I)
resp. ¬.UP (I)). This is repeated until no longer possible.



EFWFS of Normal Datalog± Programs. We relate nor-
mal Datalog± programs to sets of normal programs, and
define their equality-friendly WFS (EFWFS) as the set of
WFS of the associated normal programs. The basic idea is
as follows. If we do not make the UNA, different constants
in a normal Datalog± program P may represent the same
value. Thus, P may turn out to be any of the programs P ′
obtained from P by identifying constants. Furthermore, in
every such program P ′, existential quantifiers may intro-
duce one or more value, which, since we do not make the
UNA, does not have to be “fresh”, but can be any constant.
Hence, without the UNA, the meaning of P may be cap-
tured by the set of all normal programs P ′′ obtained from P
by identifying values, and replacing TGDs in P by arbitrary
instances, at least one for each possible variable assignment
for its body. It is then natural to consider the well-founded
models of all those programs P ′′ as the semantics of P ′′.

More precisely, an instance of a normal TGD Φ(X,Y)→
∃ZΨ(X,Z) is a rule of the form Φ(a,b)→ Ψ(a, c), where
a,b, c are tuples of constants. Let P = D ∪ Σ be a nor-
mal Datalog± program, where D is a database and Σ a set
of normal TGDs. An instance I of P is a normal program
consisting of all facts inD, and instances of TGDs in Σ such
that for all TGDs Φ(X,Y)→ ∃ZΨ(X,Z) in Σ, and all in-
terpretations a,b for X,Y, there is at least one c such that
Φ(a,b) → Ψ(a, c) is in I. Let I(P ) be the set of all in-
stances of P , and dom(P ) the set of all constants in P . For
any µ : dom(P )→ ∆, let Pµ be the program obtained from
P by replacing all constants c with µ(c). Then, the equality-
friendly well-founded semantics of P , denoted EFWFS (P ),
is the set {WFS(P ′′) | µ : dom(P ) → ∆, P ′′ ∈ I(Pµ)}.
If there are additionally negative constraints in P , then the
equality-friendly well-founded semantics comprises all ele-
ments in the above set that satisfy the constraints.

Example 4 Consider the following program P :

→ A(0);

A(X) → ∃Y1, Y2 (R(X,Y1, Y2));

R(X1, X2, X3),¬A(X3) → S(0);

A(X),¬S(X) → ∃Y1, Y2 (R(Y1, Y2, X)).

Obviously, A(0) is in the EFWFS of P . Furthermore, be-
cause of the second rule, every possible well-founded model
of P contains R(0, c1, c2). But we cannot assume c2 6= 0. If
c2 = 0, all possible applications of the third rule are blocked,
and thus ¬S(0) would be derived (the last rule may then
still add another atom R(d1, d2, 0), but this does not af-
fect the overall result). Otherwise, in case c2 6= 0, the third
rule would yield S(0), because clearly we have ¬A(c2).
Therefore, neither S(0) nor its negation is in EFWFS (P )
and the only atoms that are always in EFWFS (P ) are
A(0) and R(0, c1, c2) for some constants c1 and c2 (so, the
query ∃X1, X2 (R(0, X1, X2)) would evaluate to true). The
picture changes, if we add the constraint R(X1, X2, X3),
R(X3, X2, X1)→⊥. Then, c2 generated by the second rule
must be different from 0, and so we always obtain S(0), and
we get ¬R(d1, d2, 0), for all d1, d2, by the last rule.

Translation into Guarded Fixed Point Logic
The definition of the EFWFS refers to an infinite set of pro-
grams, which is rather inconvenient for reasoning tasks. We
now characterize the EFWFS in terms of guarded fixed point
logic, which is more suitable.

A Briefing on Guarded Fixed Point Logic. Guarded
fixed point logic (GFP), introduced by Grädel and
Walukiewicz (1999), simultaneously restricts and extends
first-order logic by enforcing a certain quantification pattern,
and allowing for inductively defining relations, while having
a satisfiability problem of moderate complexity.

LetR be a relational schema. The set of formulas of GFP
over R is built from atomic formulas over R (including
equality atoms) using Boolean combinations, and the fol-
lowing two additional formula formation rules:
I. If α is an atomic formula overR containing the variables

in X, and ψ is a GFP formula overRwhose free variables
occur in α, then ∃X (α ∧ ψ) and ∀X (α → ψ) are GFP
formulas overR. We call α guard.

II. Let R be a k-ary predicate, and X a k-tuple of variables.
Let ψ(R,X) be a GFP formula overR∪{R} whose free
variables occur in X, and whereR appears only positively
(in the scope of an even number of negation symbols) and
not in guards. Then, [lfpR,X ψ](X) and [gfpR,X ψ](X)
are GFP formulas overR with free variables X.

As for the semantics of the formulas in II, given a database
D for R, ψ defines an operator F : 2dom(D)k → 2dom(D)k

with F (S) := {a | D |= ψ(S,a)}. This operator is mono-
tone and thus has a least fixed point lfp(F ) and a greatest
fixed point gfp(F ). Then,D |= [lfpR,X ψ](a) iff a ∈ lfp(F ),
and D |= [gfpR,X ψ](a) iff a ∈ gfp(F ).

Example 5 (Grädel and Walukiewicz 1999) The following
GFP formula says that binary relation E is well-founded,
i.e., no element is the endpoint of an infinite E-path:
∀x, y

(
E(x, y)→

[
lfpW,x ∀y

(
E(y, x)→W (y)

)]
(x)
)
.

The Translation. We are now ready to specify the transla-
tion of guarded normal Datalog± into GFP. Throughout this
section, let P = D∪Σ be a fixed guarded normal Datalog±

program, where D is a database, and Σ is a set of guarded
NTGDs. Without loss of generality, we assume that P con-
tains only a single predicate R;1 let k be its arity.

We construct a GFP sentence efwfs(P ) whose models
closely correspond to the databases in EFWFS(P ). The key
is to “existentially quantify” the instances of NTGDs that
we use to compute the WFS, and to mimic the fixed-point
definition of the WFS using those instances. To encode all
the instances, we use 2k-ary predicates Sσ , for each σ ∈ Σ;
here, Sσ(a,b) encodes the instance of σ with guard atom
R(a) and head R(b). We also use k-ary predicates T ∗, C,

1It is an easy task to transform a guarded normal Datalog± pro-
gram into this form, since multiple predicates can always be sim-
ulated by constants and a single predicate. For example, instead
of writing A(x, y) ∧B(x), we may write R(a, x, y) ∧R(b, x, x),
where a and b are extra constant symbols.



T , and F , where T ∗ is intended to encode a superset of all
true atoms, C is intended to contain all tuples covered by a
tuple in T ∗ (i.e., all tuples a such that a ⊆ b for some tuple
b in T ∗), and T, F are intended to encode the set of all true
atoms, and all false atoms, respectively.

To enforce the desired interpretations of the predicates
Sσ , efwfs(P ) contains the formula ψS :=

∧
σ∈Σ ψS,σ . If

σ = ∀XY(φ(X,Y) → ∃ZR(V)), and R(U) is its guard,
then ψS,σ is the formula ∀XY(T ∗(U)→ ∃ZSσ(U,V)) ∧
∀XYZ(Sσ(U,V)→ T ∗(V)).2 To ensure that T ∗ contains
at least all atoms of the database D, we add the formula
ψD :=

∧
R(a) T

∗(a). To enforce the desired interpretation
of C, we add a formula ψC which states that C contains all
tuples of T ∗, and for every tuple (a1, . . . , ak) in C also the
tuples (a2, . . . , ak, a1) and (a2, a1, a3, . . . , ak). Finally, we
add formulas ψT := ∀W(T ∗(W) → (T (W) ↔ ξT (W)))
and ψF := ∀W(C(W) → (F (W) ↔ ξF (W))), where
W is a k-tuple of distinct variables that do not appear in Σ,
to enforce that T and F are interpreted by all true and false
atoms, respectively. The formulas ξT (W) and ξF (W) de-
fine the set of true and false atoms, respectively, and will be
specified below. Note that we include in F only the “false”
tuples from C (tuples that are not in C are false anyway).
Furthermore, to enforce that T is a “subset” of T ∗, we in-
clude the formula ∀W(T (W)→ T ∗(W)).

Our definition of ξT (W) and ξF (W) uses the follow-
ing formula ξ′F (W). Informally, ξ′F (a) means a ∈ UP ′(I),
where P ′ is a program compatible with our choice of in-
stances of NTGDs, and I is the set of all atoms R(a) with
a ∈ T ′ (T ′ is the k-ary predicate used in ψT ; think of I as
a set of atoms already derived as true). 3 We let ξ′F (W) :=
[gfpF ′,W δF ](W), where δF (F ′,W) :=

∧
σ∈Σ δF,σ. Here,

if σ = ∀XY(φ(X,Y) → ∃ZR(V)), and R(U) is its
guard, we let δF,σ(F ′,W) be4∧

1≤i≤k
Vi∈∆

Wi=Vi ∧
∧

1≤i<j≤k
Vi=Vj

Wi=Wj → ∀Y
(
Sσ(U,V)→ χ

)
,

where χ is obtained from the body of σ by replacing con-
junctions with disjunctions, by replacing every positive lit-
eral R(X′) with F ′(X′), and every negative literal ¬R(X′)
with T ′(X′). To simplify the presentation, we assume above
that the variables in σ have been renamed so that if Vi is a
variable, then Vi = Wi.

We obtain ξF (W) from ξ′F (W) by replacing the predi-
cate T ′ with T . Furthermore, ξT (W) := [lfpT ′,W δT ](W),
where δT (W) mimics the operator TP ′ with P ′ as above.
Using the formula ξ′F (W) to check whether a tuple is false
in a certain stage of the fixed-point iteration, it is now an
easy exercise to define δT (W) as desired. This concludes
the description of efwfs(P ).

2Note that both U and V may contain constants; therefore we
quantify over X,Y,Z instead. Note also that U contains all vari-
ables from X,Y, and that V contains all variables from X,Z.

3UP ′(I) can be characterized by the greatest fixed point of a
certain operator FP ′,I ; see (van Gelder, Ross, and Schlipf 1991).
ξ′F (a) just checks whether R(a) occurs in this greatest fixed point.

4Vi denotes the i-th component of V; similarly with W.

Lemma 6 For all sets T and F of atoms over {R}, the fol-
lowing are equivalent:

• T ∪ ¬.F is in EFWFS(P ).
• There is a model M of efwfs(P ) such that T = {R(a) |
T (a)∈M} and F ={R(a) | F (a) ∈M or C(a) /∈M}.

Proof (sketch). The direction from top to bottom is easy.
For the other direction, let M be a model of ψD ∧ ψS ∧
ψC . We define an instance P (M) of Σ as follows. Let
σ = Φ(X,Y) → ∃ZR(V) be a TGD in Σ with guard
R(U), and h : U → ∆. For all extensions h′ of h with
h′(Sσ(U,V)) ∈ M , add the instance Φ(h′(X), h′(Y)) →
R(h′(V)) to P (M). If there is no such extension, choose
an arbitrary extension h′ of h, and add Φ(h′(X), h′(Y))→
R(h′(V)) to P (M). It is now not hard to verify that, for
T := {R(a) | T ′(a) ∈ M} and F := {R(a) | M |=
ξ′F (a)}, we have F = UP (M)(T ). Using this, it it straight-
forward to prove that, with T ′ := {R(a) | M |= ξT (a)}
and F ′ := {R(a) |M |= ξF (a)}, it holds that T ′ ∪ ¬.F ′ =
WFS(P (M)). This is enough to establish the lemma. �

For an NBCQ Q over {R}, let Q∗ be the BCQ over
{T, F} obtained by replacing every positive literal R(X) in
Q with T (X), and every negative literal ¬R(X) in Q with
F (X). Lemma 6 yields:

Corollary 7 For all covered NBCQs Q over the schema of
P , we have EFWFS(P ) |= Q if and only if efwfs(P ) |= Q∗.

A similar result also holds for unions of covered NBCQs,
i.e., queries

∨n
i=1Qi, where each Qi is a covered NBCQ. In

that case, we would define Q∗ to be
∨n
i=1Q

∗
i .

Complexity Results
Let us call an NBCQ Q acyclic if the BCQ obtained from Q
by dropping all negative literals is acyclic.

Theorem 8 Deciding EFWFS(P ) |= Q, where P = D ∪Σ
is a guarded normal Datalog± program and Q an acyclic
covered NBCQ, is 2-EXPTIME-complete in the general
case, and EXPTIME-complete in case of bounded arities.
Hardness holds even with respect to atomic queries.

Proof (sketch). The upper bounds follow from Corollary 7
and (Grädel and Walukiewicz 1999). First, we transform
Q into a BCQ Q∗, as described immediately before Corol-
lary 7. Since Q is acyclic and covered, it follows that Q∗ is
acyclic. Hence, it is possible to turn Q∗ into a GFP formula
ψQ∗ . Moreover, by Corollary 7, we have EFWFS(P ) |= Q
iff efwfs(P ) ∧ ¬ψQ∗ is satisfiable. Since by (Grädel and
Walukiewicz 1999), satisfiability for GFP sentences is in
2-EXPTIME, and in EXPTIME in case of bounded ari-
ties, the result follows. We remark that the result in (Grädel
and Walukiewicz 1999) holds only for GFP sentences with-
out constants, but using the techniques in (Grädel 1999,
Lemma 2.3), for the general case, and in (ten Cate and
Franceschet 2005, Proposition 5), for the case of bounded
arities, we can reduce the case of GFP sentences with con-
stants to the constant-free case.

Hardness follows from the corresponding hardness re-
sults for guarded Datalog± (Calı̀, Gottlob, and Lukasiewicz



2012). Just note that, if P does not contain negation, we have
EFWFS(P ) |= Q iff P |= Q. �

For covered NBCQs which are not necessarily acyclic, we
can prove the following:

Theorem 9 Deciding EFWFS(P ) |= Q, where P = D ∪Σ
is a guarded normal Datalog± program and Q is a covered
NBCQ, is 2-EXPTIME-complete.

Proof (sketch). Let Q be a covered NBCQ. As before, we
transform Q into a BCQ Q∗. Now let χ be the disjunction
of all acyclic BCQs T such that T |= Q∗, and T has at most
three times as many atoms thanQ∗. In (Bárány, Gottlob, and
Otto 2010), it is shown that for all GFP sentences ψ without
fixed point operators, we have ψ |= Q∗ iff ψ |= χ. Their
proof readily extends to GFP sentences with fixed point op-
erators, so that, if we take ψ to be efwfs(P ), we obtain
efwfs(P ) |= Q∗ iff efwfs(P ) |= χ. Since all disjuncts in
χ are acyclic, χ can easily be turned into a GFP sentence χ′.
It follows that we can check EFWFS(P ) |= Q by checking
whether the GFP sentence efwfs(P ) ∧ ¬χ′ is unsatisfiable,
which, by (Grädel and Walukiewicz 1999), is exponential in
the size of efwfs(P ) ∧ ¬χ′, and doubly exponential in the
maximum arity of a predicate symbol. Since the length of χ′
is only exponential in the length of Q (Bárány, Gottlob, and
Otto 2010), the claim follows. �

We remark that the results of this section carry over to
unions of covered NBCQs (cf. the remark below Corollary 7
for a definition of unions of covered NBCQs, and how to
define the query Q∗ in that case).

WFS for OWL 2 QL
All the DLs of the DL-Lite family in (Calvanese et al. 2007;
Poggi et al. 2008) and the DL EL (Baader, Brandt, and Lutz
2005) can be embedded into Datalog± (Calı̀, Gottlob, and
Lukasiewicz 2012). In particular, this holds for DL-LiteR,
which forms the theoretical basis of the QL profile of the
Web ontology language OWL 2. Both our equality-friendly
WFS (EFWFS) for normal Datalog± and the OWL 2 QL
profile do not make the UNA. Our work in this paper thus
paves the way for an extension of OWL 2 QL with non-
monotonic negation under the EFWFS.

The following definition extends DL-LiteR5 (which is un-
derlying the OWL 2 QL profile) and DL-LiteR,u (Calvanese
et al. 2007; Poggi et al. 2008), and EL (Baader, Brandt, and
Lutz 2005) with nonmonotonic negation under the EFWFS.

Definition 10 Recall that a DL-LiteR,u knowledge base
consists of a pair (T ,A), where the TBox T is a finite set of
concept and role inclusion axioms U1 u · · · u Un v V , and
the ABox A is a finite set of concept and role membership
axioms C(a) and R(a, b), respectively. A DL-LiteR,u,not

knowledge base (T ,A) consists of a finite set of inclusion
axioms T and a finite set of membership axioms A, where:
• Any DL-LiteR,u inclusion axiom is a DL-LiteR,u,not in-

clusion axiom.
5Note that although DL-LiteR adopts the UNA, it actually does

not require it, since making this assumption would have no im-
pact on the semantic consequences of a DL-LiteR ontology.

• IfU1u· · ·uUn v V andU ′1u· · ·uU ′m v V with n,m > 0
are both either concept or role inclusion axioms in DL-
LiteR,u, and V is positive (i.e., not of the form V = ¬V ′),
then U1 u · · · u Un u notU ′1 u · · · u notU ′m v V is
a DL-LiteR,u,not concept or role inclusion axiom, respec-
tively. Here, the Ui’s and U ′i ’s contain no conjunction, and
notU ′i denotes the negation as failure (as opposed to the
classical negation “¬” in DL-Lite).

• For any concept A, any role R, and any individuals a, b,
the expressions A(a) and R(a, b) are concept and role
membership axioms, respectively.

A DL-LiteR,u,not knowledge base (T ,A) is a DL-LiteR,not

knowledge base iff all inclusion axioms in T contain pre-
cisely one positive atom on the left-hand side.

Finally, we define ELnot as the extension of EL that al-
lows formulas of the form notC for atomic concepts C =A
and for concepts C =∃R.B to occur in top-level conjunc-
tions on the left-hand side of TBox-axioms.

The semantics of DL-LiteR,not (resp., DL-LiteR,u,not) is
defined by translating a given DL-LiteR,not (resp., DL-
LiteR,u,not) knowledge base KB into a normal Datalog±
program PKB and by computing the well-founded semantics
of PKB . The details of the translation of DL-LiteR,not (resp.,
DL-LiteR,u,not) into Datalog± are an extension of the trans-
lation of DL-LiteR (resp., DL-LiteR,u) given in (Calı̀, Gott-
lob, and Lukasiewicz 2012). Similarly, it is possible to trans-
late ELnot into our formalism. Note that the sameAs(a, b)
and differentFrom(a, b) constraints (specifying that the two
individuals a and b are the same and different, respectively)
that may be contained in a given knowledge base (over an
ontology language without UNA) can be easily enforced by
adding appropriate equalities a= b and inequalities¬(a= b)
to the guarded fixed point sentence efwfs(PKB ).

Example 11 (Holidays (cont’d)) Consider again Exam-
ple 2. The two axioms (1) and (2) are translated into the
following normal Datalog± rules:

pDest(X), pSwimming(X),¬pBeach(X)→ ∃Y.pBB (X,Y );

pDest(X), pSwimming(X),¬p∃BB (X)→ pBeach(X);

pBB (X,Y )→ p∃BB (X),

where p∃BB (X) is a new predicate for ∃BeachBus .
Suppose next that we are additionally given a database

with holiday destinations Dest(d1), Dest(d2), and
Dest(d3), which we want to be different, i.e., we as-
sume differentFrom(d1, d2), differentFrom(d2, d3), and
differentFrom(d1, d3). We want to formalize the idea that
any destination where one can swim should have a beach or
a bus to a location with a beach — otherwise one has to take
delight in walking. This can be achieved by considering the
rules (1) and (2) along with the additional rule

Dest u notBeach u not∃BeachBus vWalkingOnly . (4)

Furthermore, we may assume that at any place where one is
not confined to only walking, one can also swim:

Dest u notWalkingOnly v Swimming . (5)



Consider the following further facts about the desti-
nations: WalkingOnly(d1); BeachBus(d2, d3). Clearly,
WalkingOnly(d1) implies that Swimming(d1) cannot be
derived — because rule (5), the only one that can be
used to derive Swimming(d1), requires the negation of
WalkingOnly(d1) to be true. Thus, the WFS of the knowl-
edge base includes notSwimming(d1). This is in contrast to
what would happen if we interpreted not as “classical” nega-
tion: in the latter case, we could not derive anything from
WalkingOnly(d1), as axiom (5) would trivially be satisfied
for d1. Other facts that are derived for d1 are notBeach(d1)
and not∃BeachBus(d1) (= notR(x, y) for any y), because
the fact notSwimming(d1) implies that rules (1) and (2)
cannot be used to derive Beach(d1) or ∃BeachBus(d1)
(note that we use the fact that d1 has to be different from
d2 and d3, because of our ABox assumptions). Concern-
ing destination d2, the WFS contains the following atoms:
notBeach(d2); notWalkingOnly(d2);Swimming(d2).

The complexity of answering covered NBCQs for any of
our DL-Litenot logics and for ELnot can now be determined
using Theorem 8. Note that Theorem 12 also yields immedi-
ate bounds for the complexity of standard DL problems such
as instance and satisfiability checking.

Theorem 12 Let L be any of DL-LiteR,u,not, DL-LiteR,not

or ELnot. Then, given a knowledge base KB = (T ,A)
and an acyclic (resp., general) covered NBCQ Q, deciding
whether Q is true under the EFWFS of KB is in EXPTIME
(resp., 2EXPTIME) for combined complexity.

Related Work
To our knowledge, there exists no closely related approach
to the WFS in DLs to date. But there is already a sub-
stantial amount of work on combining rules and ontologies.
The main direction of research so far has been to combine
rules and ontologies into dl-programs consisting of a knowl-
edge base together with a set of rules. This combination
can be carried out in loose or tight fashion. Representatives
of the former are in particular the dl-programs in (Eiter et
al. 2008) and their extension to HEX-programs (Eiter et al.
2005). The combination of defeasible reasoning with DLs
in (Antoniou 2002), the calls to DL reasoners in TRIPLE
(Sintek and Decker 2002), and the hybrid MKNF KBs in
(Motik et al. 2006; Motik and Rosati 2007) are also close
in spirit. Some representatives of tight integrations of rules
and ontologies are in particular the works due to Donini et
al. (1998), Levy and Rousset (1998), Grosof et al. (2003),
Motik, Sattler, and Studer (2005), Heymans, Nieuwenborgh,
and Vermeir (2005), and Rosati (2005; 2006). SWRL (Hor-
rocks et al. 2004) and WRL (Angele et al. 2005) also belong
to this category. For several of the above combinations of
rules and ontologies, a well-founded semantics has been de-
fined; more specifically, Eiter et al. (2004), Knorr, Alferes,
and Hitzler (2011), and Drabent and Małuszyński (2007) de-
fine a well-founded semantics for the loosely integrated dl-
programs in (Eiter et al. 2008), for the hybrid MKNF knowl-
edge bases in (Motik et al. 2006; Motik and Rosati 2007),
and for an integration of rules and ontologies that is close in
spirit to Rosati’s approach (2005; 2006), respectively.

We achieve the combination of rules and ontologies by a
reduction from description logics to logic programming for-
malisms. Obviously our work is based on the earlier work
on Datalog±. Based on the same idea of translating on-
tologies into logic programming rules and hence closely re-
lated to our work are the works by Alsaç and Baral (2001),
Swift (2004), Heymans and Vermeir (2003), and Hustadt,
Motik, and Sattler (2004). Probably the closest relation-
ship to our work has the paper on FDNC rules by Eiter
and Simkus (2010), where the stable (rather than the well-
founded) semantics is used in order to obtain a rule-based
formalism with negation-as failure that allows for the for-
mulation of ontological knowledge. FDNC rules are syntac-
tically restricted to ensure a forest-shaped model property.

Note that approaches to defining nonmonotonic DLs, such
as the one in (Bonatti, Lutz, and Wolter 2009), which is
based on circumscription, are less closely related.

Summary and Outlook
We have defined the equality-friendly WFS for Datalog with
existentially quantified variables in rule heads and negations
in rule bodies. Via a translation of its guarded fragment to
guarded fixed point logic, we have then proved the decid-
ability in the guarded case, and obtained several complex-
ity results for this case. These are important contributions
in their own right. In addition, since the approach does not
make the UNA, it can be readily used to extend DLs by non-
monotonic negation under the WFS, which we have illus-
trated along several DLs, including DL-LiteR, which is un-
derlying the important OWL 2 QL profile.

Interesting topics for future research include to investigate
the data complexity of guarded normal Datalog± and to ex-
plore how the approach can be extended by keys and to other
ontology languages, including OWL 2 EL and OWL 2 RL.
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