Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Completeness for the coalgebraic cover modality

Kupke, Clemens and Kurz, Alexander and Venema, Yde (2012) Completeness for the coalgebraic cover modality. Logical Methods in Computer Science, 8 (3). ISSN 1860-5974

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

We study the finitary version of the coalgebraic logic introduced by L. Moss. The syntax of this logic, which is introduced uniformly with respect to a coalgebraic type functor, required to preserve weak pullbacks, extends that of classical propositional logic with a so-called coalgebraic cover modality depending on the type functor. Its semantics is defined in terms of a categorically defined relation lifting operation. As the main contributions of our paper we introduce a derivation system, and prove that it provides a sound and complete axiomatization for the collection of coalgebraically valid inequalities. Our soundness and completeness proof is algebraic, and we employ Pattinson’s stratification method, showing that our derivation system can be stratified in countably many layers, corresponding to the modal depth of the formulas involved. In the proof of our main result we identify some new concepts and obtain some auxiliary results of independent interest. We survey properties of the notion of relation lifting, induced by an arbitrary but fixed set functor. We introduce a category of Boolean algebra presentations, and establish an adjunction between it and the category of Boolean algebras. Given the fact that our derivation system involves only formulas of depth one, it can be encoded as a endo-functor on Boolean algebras. We show that this functor is finitary and preserves embeddings, and we prove that the Lindenbaum-Tarski algebra of our logic can be identified with the initial algebra for this functor.