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Summary. Injecting drug users (IDUs) have a direct social and economical impact, yet can
typically be regarded as a hidden population within a community. We estimate the size of
the IDU population across the nine different Government Office Regions of England in 2005/6
using capture-recapture methods with age (ranging from 15-64) and gender as covariate in-
formation. We consider a Bayesian model-averaging approach using log-linear models, where
we are able to include explicit prior information within the analysis in relation to the total pop-
ulation size (elicited from the number of drug-related deaths and injectors’ drug-related death
rates) and the male to female ratio of IDUs. Estimating the data at the regional level allows
for regional heterogeneity and was aggregated to obtain an estimate at the England level with
posterior mean of 194600 and 95% credible interval (180350, 208800), estimated to nearest
50. The results show significant regional variability in the estimated prevalence of current IDUs
(with posterior means ranging from 3 to 9 per 1000 of population aged 15-64) and injecting
drug-related death rates across the gender × age cross-classifications.

Keywords: Drug-related deaths; Log-linear models; Population size; Injecting drug users;
Model-averaging; Prior information

1. Introduction

We focus on estimating the prevalence of current injecting drug users (IDUs) of opiates
and/or crack cocaine in England, and at the Government Office region level. England’s
population of injectors rose epidemically in the (late) 1980s (de Angelis et al , 2004), sev-
eral years later than Scotland’s (Hutchinson et al, 2006). In addition, England’s quality-
assurance in methadone prescribing was somewhat later than Scotland’s but was achieved
prior to 2004, see Strang et al (2010). A major public health reason to engage injectors in
methadone-substitution therapy is to reduce their dual risk of injecting-associated harms -
blood-borne virus transmission and drug-related death (DRD). Methadone clients may con-
tinue to inject but, typically, their number of injections of illicit heroin reduces considerably
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(Hutchinson et al, 2000). In terms of DRDs, in the decade 2000-2009, 78% (3,125/4,012) of
Scotland’s DRDs were opiate-related (heroin and/or methadone), while the proportion was
lower for England and Wales in the decade 1998-2007 at 63% (9,931/15,795). In England
and Wales, as in Scotland, the proportion of DRDs that are opiate-related was higher for
males than for females: Scotland - males 81%, females 67% (520/780); England and Wales
- males 67%, females 46% (1,490/3,205) as reported by Bird et al (2010).

Not all opiate-related DRDs occur in injectors, but the majority does. Official statistics
do not report whether the deceased had a history of injection drug use, let alone whether
s/he was a current injector, and so we cannot know which opiate-related DRDs occurred in
current injectors. Instead, as a reasonable approximation, we shall count, or attribute, all
heroin-related DRDs (but no methadone-only DRDs) as having occurred in current injectors
and report an ‘injecting DRD rate’. Our use of this term denotes heroin-related DRDs per
100 current injectors. This definition differs from the approximation that King et al (2009)
used for Scottish injectors’ DRD rate, which was made before having access to more detailed
toxicology on a decade of DRDs. Our analyses of Scottish injectors’ DRD rates discovered
that the DRD rate was markedly higher for young male than for young female injectors
but that the female advantage was not sustained in older injectors (35-64 years). Greater
Glasgow was one of the first areas in Scotland identified with high injecting prevalence, but
there was later both diffusion of injecting to regions outwith Glasgow and earlier desistence
in Glasgow which dissuaded younger recruits from injecting. A crude measure of males’
desistence between regions is the ratio of male current injectors by age-group (15-34 to
35-64), with higher ratios the more worrying from a public health perspective.

We shall investigate the extent to which English Government Office Regions, notably
London and the North West where injecting was established early, demonstrate similar
trends as in Glasgow. We use capture-recapture methods to estimate the numbers of IDUs
at the regional level. These are then combined to obtain an estimate at the England level,
while still accounting for regional heterogeneity. English regions differ in size and so we
also relate our regionally estimated number of current injectors to the region’s mid-2005
population (aged 15-64 years).

Capture-recapture data for closed populations have a long history in application to
both ecological (Otis et al, 1978) and epidemiological populations (Hook and Regal, 1995).
Within epidemiological studies, capture-recapture data are used in a variety of situations
including the estimation of hidden populations (Mastro et al, 1994; Frischer et al , 1993;
Beynon et al, 2001; King et al, 2009) and disease prevalence (Hook et al, 1980; Madigan
and York, 1997; Chao et al, 2001). Capture-recapture data involve a number of different
data sources. Individuals are uniquely identifiable from each source which allows for the
construction of a contingency table where each cell entry corresponds to the number of indi-
viduals observed by each distinct combination of sources. However, there is an unobservable
cell corresponding to the number of individuals who belong to the population but were not
observed by any source. Thus, failing to estimate this cell entry can potentially significantly
underestimate the true population size, particularly with difficult to reach populations. To
estimate the unobservable cell, a model is fitted to the observed data. We consider the
commonly used log-linear models and apply a Bayesian approach that permits the use of a
model-averaged estimate of the population size, accounting for both parameter and model
uncertainty (Madigan and York, 1997; King and Brooks, 2001).

Additional covariate information can often be collected corresponding to individual char-
acteristics, such as gender, location, age, marital status etc. Individuals with different
characteristics may have different propensities to be observed by different combinations of
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sources (King et al, 2009). Discrete covariates can be introduced as additional factors within
the analysis to account for covariate heterogeneity. For example, King et al (2005) allowed
for two-level covariate factors within their analysis. For the nine Government Office Regions
of England, we adopt a similar approach considering two demographic characteristics, each
with two levels: sex and age-group, (15-34 years, 35-64 years), by which DRDs are also
cross-classified. Note that we do not include the region itself as a discrete covariate, but
analyse the regional data independently of each other. This permits a direct comparison
of important interactions identified for each region and avoids additional complex compu-
tational issues. Of particular interest is not only the estimates of IDUs within and across
regions, but also injectors’ DRD rates. We use expert prior information on the injecting
DRD rate, combined with information on the regional number of heroin-related DRDs, to
elicit an informative prior on total number of injectors. The DRDs are themselves provided
across the different covariate levels, permitting the estimation of injecting DRD rates for
the different joint covariate levels.

In Section 2 we describe the regional capture-recapture data and introduce the notation
that we use throughout the paper before describing the Bayesian approach that we imple-
ment to analyse the data in Section 3. Section 4 provides the results obtained from the
analysis, with particular focus on the number of injecting drug users and associated DRD
rates. Capture propensities are also discussed. We conclude with a discussion in Section 5.

2. Regional Data

Data used within the capture-recapture analyses were collected nationally across England.
These data can be disaggregated to the Drug Action Team (DAT) area level, a total of
149 within England. We consider the data collected in the financial year 2005-6. For each
DAT area, the same four sources are used to identify IDUs uniquely from which we can
construct a 24 contingency table with a single unknown cell. These sources collect data
from (1) probation; (2) Drug Intervention Programme (DIP) prison assessments; (3) drug
treatment; and (4) DIP community assessments. DIPs are a crime reduction initiative which
works across different organisations, including criminal justice bodies such as police, prison
and probation, and drug treatment services. Assessments which record an individual’s
current drug using and drug injecting status are carried out at various points in their
journey through the criminal justice system and into treatment. In England, there has
been major investment in DIPs, both in prisons and in the community, with the aim of
engaging in assessment and drug treatment those caught up in the criminal justice system
who test positive for opiates or cocaine. Regions where connections across services are made
successfully would be revealed by the same clients tending to feature on more than one data-
source and perhaps by lower injecting DRD rates if current injectors are successfully engaged
in opiate substitution therapy, which is mainly by methadone in the UK.

Notationally, we label the sources S1, S2, S3 and S4, using the same order as above. We
label each cell in the 24 contingency table by k ∈ {0, 1}4 which represents the combination
of sources that an individual is observed by. For example, cell k = {0, 1, 0, 0} corresponds
to being observed by only source 2 (DIP prison assessments). Covariate data corresponding
to gender and age on each individual observed are also recorded in the data collection
process. We cross-classify the observed individuals into gender and age-group (15-34 and
35-64), allowing us to construct four 24 regional contingency tables, which can be written
as a 26 contingency table with each cell corresponding to the number of individuals that
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Table 1. Number of unique injecting drug users observed in each region and each cross-classification of
gender and age.

Region Total Male 15-34 Female 15-34 Male 35-64 Female 35-64

1 East of England 3408 1574 605 962 267
2 East Midlands 5717 3365 963 1117 272
3 London 8198 2687 1062 3492 957
4 North East 5585 2944 858 1643 140
5 North West 11309 4678 1756 3904 971
6 South East 5444 2065 940 1498 401
7 South West 8767 4091 1580 2405 691
8 West Midlands 6627 3886 1081 1332 328
9 Yorkshire and Humber 11231 6412 2221 2089 508

England 66286 32243 11066 18442 4535

are observed by each combination of four sources for each gender × age-group classification.
These contingency table data at the DAT area level were aggregated to the 9 Government
Office regions for transmission to, and analysis by, us. For each of the 9 regional contingency
tables, there are 4 unknown cell entries, corresponding to the number of individuals not
observed by any of the sources for each gender × age-group classification.

For a given region, we let nobs and nunobs denote the set of observed and unobserved
cell entries, respectively, and n = {nobs,nunobs}. Further, for each individual region, we
let n(i,j) denote the observed number of individuals of gender i in age-group j; and n(i,j):k
the number of individuals of gender i in age-group j that belong to cell k ∈ {0, 1}4 for
i ∈ {M,F} (M = male; F = female) and j ∈ {15−34, 35−64}. Thus, n(i,j):0 = n(i,j):{0,0,0,0}
denotes the number of individuals of gender i in age-group j that are not observed (i.e.
the missing cell for the given cross-classification). We let N(i,j) denote the total number
of individuals of gender i in age-group j for i ∈ {M,F} and j ∈ {15-34, 35-64}; and
N = {N(i,j) : i ∈ {M,F}; j ∈ {15− 34, 35-64}}, so that,

N(i,j) = n(i,j) + n(i,j):0 =
∑

k∈{0,1}4

n(i,j):k.

We let Ntot =
∑

ij N(i,j) denote the total number of IDUs in the given region. Finally,
for notational purposes, we let N(i) =

∑
j N(i,j) (corresponding to the total number of

individuals of gender i ∈ {M,F}) and N(j) =
∑

i N(i,j) (corresponding to the total number
of individuals in age-group j ∈ {15−34, 35−64}). To provide a brief summary of the data,
we present the observed number of unique individuals identified in each region in Table 1
along with the corresponding number observed for each combination of gender and age (i.e.∑

ij n(i,j) and n(i,j) for i ∈ {M,F} and j ∈ {15-34, 35-64}) for each region.

3. Analysis

The observed contingency table for each region is analysed independently of all other regions.
We consider the set of log-linear models initially introduced by Fienberg (1972), where the
log of the cell probabilities, p, are a linear sum of main effects and interaction terms between
the sources and/or covariates (and normalised so that the sum of the cell probabilities
equals unity). We restrict the set of possible interactions to that of two-way interactions
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corresponding to source × source (6 in total), source × covariate (8 in total) and covariate
× covariate (only 1) interactions.

We let the set of all possible log-linear parameters be denoted by θ. The corresponding
set of cell entries, n, has a Multinomial distribution with parameters, Ntot and p. For further
details see for example King et al (2005, 2009) who consider similar models in relation to
the number of IDUs for Scotland, there treating region as an additional two-level factor.

3.1. Bayesian approach
We consider a Bayesian approach and analyse the data from each region independently of
all other regions so that, without loss of generality, we condition on any given region. For a
given log-linear model, m, (in terms of the log-linear parameters present in the model) we
let the corresponding set of log-linear parameters be denoted by θm. We then form the joint
posterior distribution over the set of log-linear parameters and total number of individuals
in each gender × age-group cross-classification,

π(N ,θm|nobs) ∝ f(nobs|N ,θm)p(N ,θm)

∝ Ntot!
∏

i∈{M,F}

∏
j∈{15−34,35−64}

1

(n(i,j):0!)

∏
k∈{0,1}4

p
nij:k

ij:k p(N ,θm)

where pij:k denotes the probability that an individual of gender i in age-group j is observed
in contingency table cell k and is a deterministic function of the θm parameters. The first
terms in the posterior distribution correspond to the Multinomial likelihood component
and p(N ,θm) = p(N)p(θm) the prior on the total population counts for each gender ×
age-group cross-classification and log-linear parameters that are assumed to be independent
of each other.

We do not specify the log-linear model a priori, in terms of the log-linear interaction
terms that are present in the model, but consider a model discrimination approach. Within
the Bayesian framework we follow the approaches of Madigan and York (1997) and King
and Brooks (2001) and extend the posterior distribution to include the model space. In
other words, we treat the model itself to be a discrete parameter, given the observed data,
and form the joint posterior distribution over both the model and parameter space. The
(marginal) posterior model probability for model m, given the data, can be expressed in
the form,

π(m|nobs) ∝
∫
θm

∑
N

π(N ,θm|nobs)dθm,

where the denominator once again ensures that the sum of the posterior distribution over
admissible models sums to unity. In addition, we are also able to calculate the posterior
(model-averaged) distribution of the population sizes, accounting for both parameter and
model uncertainty. For example, the posterior model-averaged distribution for the number
of IDUs for each gender × age-group cross-classification (and hence the total population
size) is given by,

π(N |nobs) =
∑
m

π(N |nobs,m)π(m|nobs),

where π(N |nobs,m) denotes the marginal posterior distribution for N under model m.
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Table 2. Estimated average number of injecting drug related deaths (DRDs) per year
for each region using data from the four calender years 2004-2007.

Region Total Male 15-34 Female 15-34 Male 35-64 Female 35-64

1 60.8 25.4 4.7 26.3 4.4
2 50.8 23.9 3.7 19.6 3.6
3 104.4 41.4 6.2 49.2 7.6
4 115.3 48.4 8.7 48.4 9.8
5 45.7 27.1 3.0 12.8 2.8
6 114.3 48.0 8.3 48.7 9.3
7 78.3 34.9 4.7 32.6 6.1
8 71.7 33.1 4.4 29.5 4.7
9 95.0 54.5 6.8 29.0 4.7

England 736.1 336.7 50.4 296.0 53.0

3.2. Prior expert information
There is external information available that can be combined with expert prior beliefs to
provide an informative prior in relation to the total number of IDUs for each gender ×
age-group cross-classification. These relate to the total number of IDUs and the male to
female ratio of IDUs. In particular, we have independent data relating to the number of
heroin-related DRDs for each region between 2004-2007 and prior beliefs relating to the
annual DRD rate for injectors. The totality of DRDs includes those with any combination
of heroin/morphine, methadone, cocaine, benzodiazapines and alcohol in their systems at
time of death. We assume that current IDUs are only those with any heroin/morphine
in their system (irrespective of any other drugs identified). The corresponding estimated
numbers of injecting DRDs are provided in Table 2 for each region (including at the gender
× age-group cross-classification) and aggregated to the England level. To form the prior on
the total population size, we couple this information with the prior beliefs relating to the
annual injecting DRD rate. We specify a symmetric 90% interval for IDUs’ annual injecting
DRD rate of (0.3%, 1.2%) with median of 0.6% (this prior was informed by the analysis of
Merrall et al (2010) of drug-related death rate for drug treatment clients in Scotland from
1996-2006 and for Scotland’s injectors as analysed by King et al (2009)). Finally, following
King et al (2005), we specify a symmetric 80% prior interval for the male to female ratio of
(3:2, 9:1).

3.3. Prior distributions
We initially specify priors on the log-linear parameters where we do not have any prior
information, before we consider the parameters on which there are some expert prior beliefs,
relating to the population size and male to female ratio. We complete the prior specification
with the prior model probabilities in terms of the interactions present in each model. For
each individual region and each possible log-linear model we follow King and Brooks (2001)
and specify a hierarchical N(0, σ2I) distribution on the set of log-linear parameters present
in the model and use the noninformative prior σ2 ∼ Γ−1(0.001, 0.001).

We now consider the informative prior beliefs. To represent the expert prior information
we specify a log-Normal prior on the total population satisfying the prior beliefs for the total
population size (independently over models). For example, suppose that, for a given region,
the estimated annual number of DRDs of injectors is x. We specify a prior on the log of the
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total number of IDUs for the region to be normally distributed with mean log(x/0.6%) (so
that the prior median is accurately reflected) and variance 0.1776 (to reflect the specified
prior 90% interval). Similarly, we set the log of R = N(M)/N(F ) to be normally distributed
with mean log(3.6742) and variance 0.489. This provides a prior median of 3 for the male to
female ratio with 80% symmetric interval of (1.5, 9). Finally, without any remaining prior
beliefs on the age distribution, we specify Uniform[0,1] priors on the proportion of young,
conditional on being male or female, which we denote by P1 and P2, so that,

P1 =
N(M,15−34)

N(M)
and P2 =

N(F,15−34)

N(F )
.

Finally, we specify a prior over the model space. We define the set of possible models to
be those models with a maximum of second-order interaction terms (i.e. two-way factors).
This significantly reduces the number of possible hierarchical log-linear models and aims
to focus on the most important direct interactions between the different sources and/or
covariates. Without any strong prior information relating to the two-way interactions that
may be present we specify a prior probability of 0.5 that each interaction is present in the
model. This induces an equal prior probability for each possible model in the set of plausible
models.

3.4. (Reversible jump) Markov chain Mote Carlo algorithm
The posterior distribution is defined over both parameter and model space, so that we imple-
ment a reversible jump (RJ) Markov chain Monte Carlo (MCMC) algorithm (Green, 1995)
to explore the posterior distribution, since the posterior distribution is multi-dimensional
(the number of parameters differs between different models). Within the algorithm, we use
a two-step procedure:

Step 1 Conditional on the model, we cycle through each individual parameter in turn and
propose to update the parameter using a Gibbs or Metropolis-Hastings (MH) step;

Step 2 Update the model using a reversible jump step by adding or removing a log-linear
interaction term from the model.

We consider each step in turn.

3.4.1. Step 1: Updating the parameters
We update σ2 using a Gibbs step, since the posterior conditional distribution is of standard
form (i.e. inverse Gamma) and a single-update random walk MH algorithm for all the other
log-linear parameters and population sizes for each gender × age-group cross-classification.
See Brooks (1998) for a general description of these algorithms and King and Brooks (2001)
for the specific application to the log-linear parameters. However, we consider the updating
of the total number of individuals in each gender × age-group cross-classification, N , (or
equivalently the missing cell entries) in further detail due to the complexity associated with
the informative prior specified.

The prior relating to the population size is specified in the form p(Ntot, R, P1, P2) =
p(Ntot)p(R)p(P1)p(P2). However, the model is defined in terms of the total number of indi-
viduals in each gender × age-group classification (or equivalently each unobserved cell entry)
and it is these parameters, N = {N(M,15−34), N(F,15−34), N(M,35−64), N(F,35−64)}, that are
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updated using a single-update algorithm within the MCMC algorithm. To demonstrate the
issue that arises in this case, without loss of generality, consider the MH random walk to
update the parameter N(M,15−34). We propose the candidate value,

N ′
(M,15−34) = N(M,15−34) + ϵ,

where ϵ ∼ U [−d, d] for some prespecified value of d, chosen via pilot tuning. We let
N ′ = {N ′

(M,15−34), N(F,15−34), N(M,35−64), N(F,35−64)). The acceptance probability is given

by min(1, A), where A reduces to,

A =
f(nobs|N ′,θm)p(N ′)

f(nobs|N ,θm)p(N)

=
N ′

tot!N(M,15−34)!

Ntot!N ′
(M,15−34)!

pϵ(M,15−34):0

p(N ′)

p(N)
,

where N ′
tot = N ′

(M,15−34)+N(F,15−34)+N(M,35−64)+N(F,35−64) and p(M,15−34):0 denotes the
current value of the probability an individual is male, in age-group 15-34 and unobserved.
The acceptance probability is a function of the joint prior distribution p(N). However, the
prior on the population size is provided in the form p(Ntot, R, P1, P2). We calculate the cor-
responding prior distribution on p(N) = p(N(M,15−34), N(F,15−34), N(M,35−64), N(F,35−64))
using a transformation of variable argument. In particular, we have that,

p(N) = p(Ntot, R, P1, P2)
Ntot

N(M)N
3
(F )

,

where the final term corresponds to the Jacobian (see appendix for derivation). We note that
an alternative approach, in principle, would be to propose to update the parametersNtot, R,
P1 and P2 within each iteration of the Markov chain, since the priors are specified directly on
these parameters. However, the proposal distribution of the corresponding MH algorithm
would be significantly more complex, since this involves simultaneously updating multiple
cell entries within a single step. For example, updating P1 will involve simultaneously
updating N(M,15−34) and N(M,35−64); P2 updating N(F,15−34) and N(F,35−64); and R and N
updating all missing entries simultaneously, so that the corresponding proposal distribution
is considerably more complex.

3.4.2. Step 2: Updating the model
To update the log-linear interaction terms present within the model we use a reversible
jump step (Green, 1995). For a single RJ step, we propose to add or remove a single
two-way interaction term (since we only consider models with two-way interactions). We
choose each log-linear interaction with equal probability. If the parameter is present in the
model, we propose to remove the parameter; if it is not in the model, we propose to add the
parameter. Suppose that we propose to add a given two-way interaction parameter. We
propose a candidate value from a proposal distribution, q, which in this case is a Normal
distribution. The corresponding proposal mean is obtained using the posterior mean of the
given parameter from a pilot MCMC run in the model containing all two-way interactions.
The proposal variance is chosen via pilot-tuning. See King and Brooks (2001) for further
details using an analogous approach. The corresponding acceptance probability simply
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reduces to the ratio of the likelihood function using the proposed and current parameter
values respectively, multiplied by the ratio of the prior density function to proposal density
function for the newly proposed log-linear parameter (the Jacobian is equal to unity).

For each region, the RJMCMC algorithm is run for a total of 2 million iterations with
the first 10% discarded as burn-in. Independent replications using over-dispersed starting
points obtained similar results (all with the same interpretation) so that we conclude that
the algorithm has sufficiently converged. Additionally, using the Brooks-Gelman-Rubin
statistic on the missing cell entries provided no evidence for lack of convergence.

4. Results

4.1. Estimating the Number of Injecting Drug Users
Figure 1 provides plots of the prior and (model-averaged) marginal posterior distributions
for the number of IDUs in each region. For regions 2, 3, 5, 7, 8 and 9, the priors generally
appear to underestimate the number of IDUs in the different regions. The most signifi-
cant difference between the prior and posterior distributions is clearly for region 5 (North
West) with virtually no overlap between the prior and posterior distributions. This would
potentially suggest, for these regions, and particularly region 5, that (i) the estimate of the
number of injecting DRDs is an underestimate and/or (ii) the injecting DRD rate is lower
than the prior expert beliefs. We return to this issue below when discussing the posterior
injecting DRD rates. We note that specifying alternative (uninformative priors) on the
total population size (namely a Uniform prior on each missing cell) resulted in very similar
posterior distributions for the total population size, providing evidence that the posterior
for N is data-driven.

Table 3 provides the posterior estimates for the total population size and each combi-
nation of gender × age-group cross-classifications for each of the regions, in addition to the
corresponding population sizes for England (i.e. posterior estimates summed over each re-
gion). The posterior mean of the total current injector population for England can be easily
calculated as the sum of the posterior means of the estimates for each region. However, the
corresponding credible intervals (CIs) at the England level cannot be obtained directly from
the credible intervals for each individual region. For example, summing the 2.5% quantiles
(used for the lower bound of the 95% credible interval) over all regions will not give the
corresponding 2.5% quantile for England (the value obtained would be for a much lower
quantile for the total population size for England). We obtain the 95% credible interval at
the national level by considering a Monte Carlo approach. Recall that the regional datasets
are analysed independently of each other, so that the posterior (marginal) distributions of
the population sizes are independent across regions. To obtain a sample observation from
the posterior distribution of the population size for England, we simply take a sample ob-
servation of the number of IDUs from each region and sum these values. This Monte Carlo
approach is also used to obtain the gender × age-group population size estimates and the
injecting DRD rate.

From Table 3 we see that three regions (3, 5 and 9) appear to have significantly higher
absolute number of IDUs than the other regions. These regions correspond to London,
North West and Yorkshire and Humber. In addition, there is consistently a larger estimated
number of males than females in each region for each age-group considered. Overall, the
posterior mean ratio of males to females (aggregated to the England level) is 3.32 with
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Fig. 1. The posterior distribution for the total population size for each region (in black) and the
corresponding prior distribution (in grey).
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Table 3. Posterior mean and 95% symmetric credible interval (in brackets) for the total number of IDUs in
each region and each cross-classification of gender and age and aggregated to the England level using
a Monte Carlo approach (rounded to nearest 10).

Region Total Male 15-34 Female 15-34 Male 35-64 Female 35-64

10810 5040 1640 3370 760
1

(9350, 12530) (4310, 5900) (1370, 1990) (2780, 4000) (620, 950)
15220 8890 2220 3400 700

2
(13440, 17340) (7830, 10150) (1890, 2730) (2930, 3960) (570, 880)

39130 14400 4530 16710 3490
3

(26870, 49850) (9660, 18710) (3080, 66200) (11460, 21480) (2440, 4790)
14970 7410 2250 4890 420

4
(12880, 18080) (6390, 8970) (1900, 2750) (3770, 6130) (310, 550)

33830 12910 5410 12240 3280
5

(30260, 37970) (11570, 14450) (4800, 6120) (10900, 13800) (2870, 3740)
14690 6690 2530 4290 1180

6
(12750, 21980) (5810, 9900) (2170, 3810) (3660, 6500) (980, 1810)

18930 8520 3470 5360 1570
7

(16730, 21350) (7540, 9610) (2880, 3980) (4700, 6120) (1290, 1830)
16760 9390 2850 3540 980

8
(15100, 18780) (8460, 10510) (2500, 3250) (3130, 4020) (820, 1150)

30280 16530 6250 5960 1550
9

(26860, 33960) (14690, 18500) (5490, 7070) (5230, 6770) (1330, 1790)

194610 89760 31150 59760 13940
England

(180340, 208810) (83840, 95890) (29050, 33510) (53980, 65380) (12660, 15430)

corresponding 95% symmetric CI (3.12, 3.46). The posterior mean male to female ratio
over the different regions ranges from 2.76 (South West) to 4.61 (North East). These values
all lie around the prior median for the male to female ratio.

For comparison with the estimate of the number of IDUs in England in Table 3 by aggre-
gating the posterior regional estimates, we perform a further analysis where we aggregate
the raw data across the Government Office regions and analyse the resulting contingency
table using the same Bayesian approach. This aggregation of the raw data over the regions
removes a potential source of heterogeneity across the different regions. To analyse these
data, we use the same prior beliefs as before, which provides a prior median for the total
population size of 121,848 with 90% interval (60924, 243696). This lower bound is actually
less than the number of observed IDUs (see Table 1). The corresponding posterior mean
(rounded to nearest 10) of the total population size is 209,120 with 95% symmetric CI of
(197570, 221470). Thus the regionally-derived England estimate (i.e. obtained by aggre-
gating the posterior regional estimates) is generally lower, although there is some overlap
between the credible intervals, than that obtained when analysing the data without heed to
the regional component (i.e. aggregating at the data level). If we consider the corresponding
estimates for the cross-classifications when aggregating at the data level we obtain posterior
means and 95% symmetric CIs (rounded to nearest 10) for males 15-34 of 96110 (90770,
101780); females 15-34 of 36760 (34220, 39210); males 35-64 of 59700 (56130, 63590); and
females 35-64 of 16540 (15320, 17760). The posterior estimate for males 35-64 is fairly
consistent with the regionally-derived England estimate, but with higher estimates for the
other gender × age-group cross-classifications. In other words, allowing for heterogeneity
at the regional level results in lower estimates of female and younger male IDUs.
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A previous estimate obtained for England by Hay et al (2009) is significantly smaller,
corresponding to a point estimate of 129,977 with 95% confidence interval (125786, 137034).
They also provide estimates for each of the same 9 Government Office regions, these are
again typically lower (except for region 6 - South East). These previous estimates were
obtained by considering a 24 incomplete contingency table (ignoring gender × age-group
cross-classifications) for each individual DAT area and aggregating the estimates (using a
bootstrap approach to obtain the confidence interval) to either the regional or England level.
We note that Hay et al (2009) considered a reduced set of log-linear models, corresponding
to those with a maximum of two two-way interactions present (a total of 22 distinct models).
Typically the model with lowest AIC value was chosen (although see Hay et al (2009) for
more specific details) and the corresponding estimate for total population was as given
by the chosen log-linear model. By contrast, within our approach, we include the model
uncertainty within our estimates (often leading to wider uncertainty intervals to reflect
the additional model uncertainty). We return to the underlying reasons for this apparent
discrepancy in population estimates between these different approaches in Section 4.3 when
we discuss in further detail the interactions identified for each of the Government Office
regions.

Finally, Table 4 relates the centrally estimated number of current injectors to regions’
mid-2005 population aged 15-64 since the regions differ in population size. England has an
estimated 5.8 current injectors per 1,000 of the population aged 15-64 (with 95% symmetric
CI 5.4-6.3). The estimated injector prevalence is low (posterior mean around 3) in East
England (region 1) and the South East (region 6), high (posterior mean around 7.5) in
London (region 3) and the North West (region 5) and very high (posterior mean around 9)
for the North East (region 4) and Yorkshire and Humberside (region 9). However, it is an
encouraging sign for London and the North West (with high prevalence rates) that their
injector prevalences by age-group (15-34 to 35-64) are relatively low compared to England
as a whole (posterior mean of 1.61 for males; 2.23 for females; and see Millar et al (2006) for
further detailed discussion of problem drug use in the North West up to 2001). Regions with
high injector ratios by age-group may be a signal of later diffusion with younger injectors
predominating. These regions include East and West Midlands (regions 2 and 8), and
Yorkshire and Humberside (region 9), the last of which is also beset by the largest overall
injector prevalence per 1,000 of the population aged 15-64.

4.2. Injecting Drug-related Death Rates
We obtain a sample from the posterior distribution for the injecting DRD rates by taking
the ratio of the estimated number of DRDs (as provided in Table 2) with the total number
of IDUs for each gender × age-group cross-classification at each iteration of the Markov
chain. The corresponding posterior mean and symmetric 95% CI of the injecting DRD
rates are provided in Table 5. Recall that the prior 80% interval on the injecting DRD
rates is (0.3%, 1.2%). We comment first at the England level where the posterior injecting
DRD rate is at the lower end of the prior distribution informed by the Scottish analyses.
We note that the overall posterior estimate for the injecting DRD rate is lower than that
presented by Bloor et al (2008) who were investigating the “Scottish effect” of higher DRD
rates in Scotland compared to England, obtaining an estimate for Scotland of 0.8% (with
95% uncertainty interval 0.5%-1.2% using data from 2001-5). In addition, the DRD rate
in England appears to be significantly lower for younger than older injectors: for males,
posterior means of 0.38% for the younger age-group compared to 0.5% for the older age
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Table 4. Current injector totals set in context by regions’ mid-2005 population aged 15-64 and
estimated ratio of young to old (i.e. 15-34 to 35-64) for each gender in each region with symmetric
95% credible intervals.

Posterior Posterior Posterior
mean of Posterior mean of mean of
current mean male female
injectors current injector injector

mid-2005 (per 1,000) injectors ratio by ratio by
populations population to nearest age-group age-group
aged 15-64 aged 15-34 50 (15-34/35-64) (15-34/35-64)

Region (in 1000s) (95% CI) (95% CI) (95% CI) (95% CI)

1 3604.0 3.0 10800 1.50 2.15
(2.6, 3.5) (9350, 12550) (1.36, 1.82) (1.88, 2.58)

2 2839.0 5.4 152000 2.62 3.17
(4.7, 6.1) (13450, 17350) (2.43, 2.85) (2.75, 3.62)

3 5269.0 7.4 39150 0.86 1.30
(5.1, 9.5) (26850, 49850) (0.76, 0.97) (1.13, 1.48)

4 1686.1 8.9 14950 1.53 5.41
(7.6, 10.7) (12900, 18100) (1.36, 1.97) (4.41, 7.17)

5 4497.0 7.5 33850 1.05 1.65
(6.7, 8.4) (30250, 37950) (1.01, 1.10) (1.54, 1.77)

6 5338.0 2.8 14700 1.56 2.15
(2.4, 4.1) (12750, 22000) (1.47, 1.67) (1.94, 2.39)

7 3252.7 5.8 18950 1.59 2.20
(5.1, 6.6) (16750, 21350) (1.48, 1.66) (2.02, 2.36)

8 3499.9 4.8 16750 2.65 2.93
(4.3, 5.4) (16750, 18800) (2.49, 2.86) (2.61, 3.36)

9 3325.7 9.1 30300 2.78 4.05
(8.1, 10.2) (26850, 33950) (2.59, 2.92) (3.68, 4.40)

England 33311.4 5.8 194600 1.61 2.23
(5.4, 6.3) (180350, 208800) (1.56, 1.64) (2.14, 2.30)
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Table 5. Posterior mean and 95% symmetric credible interval (in brackets) for the drug-
related death rates for IDUs, (in %), in each region and each cross-classification of gender
and age.

Region Total Male 15-34 Female 15-34 Male 35-64 Female 35-64

0.57 0.51 0.29 0.79 0.58
1

(0.48, 0.65) (0.43, 0.59) (0.24, 0.34) (0.66, 0.94) (0.46, 0.71)
0.34 0.27 0.17 0.58 0.52

2
(0.29, 0.38) (0.24, 0.31) (0.13, 0.19) (0.49, 0.67) (0.41, 0.63)

0.27 0.29 0.14 0.30 0.22
3

(0.21, 0.39) (0.22, 0.43) (0.10, 0.20) (0.23, 0.43) (0.16, 0.31)
0.78 0.66 0.39 1.00 2.37

4
(0.64, 0.90) (0.54, 0.76) (0.32, 0.46) (0.79, 1.28) (1.79, 3.14)

0.14 0.21 0.06 0.10 0.09
5

(0.12, 0.15) (0.19, 0.23) (0.05, 0.06) (0.09, 0.12) (0.08, 0.10)
0.79 0.73 0.33 1.16 0.80

6
(0.52, 0.90) (0.48, 0.83) (0.22, 0.38) (0.75, 1.33) (0.51, 0.94)

0.42 0.41 0.14 0.61 0.39
7

(0.37, 0.47) (0.36, 0.46) (0.12, 0.16) (0.53, 0.69) (0.33, 0.47)
0.43 0.35 0.15 0.84 0.48

8
(0.38, 0.47) (0.31, 0.39) (0.14, 0.18) (0.73, 0.94) (0.41, 0.57)

0.31 0.33 0.11 0.49 0.30
9

(0.28, 0.35) (0.29, 0.37) (0.10, 0.12) (0.43, 0.55) (0.26, 0.35)

0.38 0.38 0.16 0.50 0.38
England

(0.35, 0.41) (0.35, 0.40) (0.15, 0.16) (0.45, 0.55) (0.34, 0.42)

group with non-overlapping credible intervals; for females, posterior means of 0.16% to
0.38% for the younger and older age groups, respectively, with non-overlapping credible
intervals. We note that the previous analysis of King et al (2009), using data from 2003-5,
estimated significantly higher injecting DRD rates for the cross-classified groups in Scotland
but, unlike this analysis, only identified a lower female DRD rate for young injectors with
no gender differential for older injectors. For England, more definitively than for Scotland,
we observe that older females’ injecting DRD rate is also significantly lower than for older
males (posterior mean of 0.38% versus 0.5% with non-overlapping credible intervals). See
King et al (2009) for further details and results relating to the analyses of the Scottish data.

We now consider the results at the regional level. Comparing the results in Table 5 with
the 80% prior interval for DRD rate, it is clear that region 5 (North West) appears to be the
most at odds with these prior beliefs, with the upper 97.5% posterior quantiles of injectors’
DRD rates all lower than 0.3% (the lower 5% prior quantile) for each gender × age-group.
Comparing the prior and posterior distributions of numbers of IDUs in Figure 1 we see no
visible overlap between these distributions. The significantly higher posterior estimate of
the population size (compared to the prior specification) consequently produces the lower
estimates of the injecting DRD rates.

For all regions, the lowest injecting DRD rates are for females in the younger age-group
(15-34), with many regions having an injecting DRD rate in the lower 5% quantile of the
prior interval. Overall, the female injecting DRD rates are generally lower than for the
males. However, we note that the largest injector DRD rate occurs for females aged 35-64
in region 4 (North East). This also corresponds to the smallest estimated cross-classification
population size over all regions. As discussed above, the older age-group (35-64) generally
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has a higher injecting DRD rate for both males and females, relative to the younger age-
group (15-34), with the exception of region 5 for males.

Three regions in Table 5 (1, East of England; 6, South East; and 4, North East) had
particularly high injecting DRD rates, the first two of which (1 and 6) can be seen from
Table 4 as regions with the lowest prevalence of current injectors per 1,000 of the population
aged 15-64. The North East (region 4) shares with Yorkshire and Humberside (region 9)
the burden of equally high injector prevalence but DRD rates that appear to be more than
double those of injectors in Yorkshire and Humberside. A possible reason for the successful
management of the injecting DRD rates in region 9 becomes apparent in the next subsection,
when we consider the interactions present between the sources. Higher injecting DRD rates
in low prevalence regions (1 and 6) may reflect a lesser priority accorded to IDUs by dint
of lower injector prevalence.

Finally, we note that England’s injecting DRD rate, as defined by us, is in line with
the DRD rate of 0.36% reported by Merrall et al (2010) for all Scotland’s drug treatment
clients in the five years to the end of March 2006 and considerably lower than the 1% total
mortality reported by Cornish et al (2010) for 5,577 patients on the UK General Practice
Research Database who were prescribed methadone in 1990-2005 and followed-up until one
year after expiry of their last prescription for opiate substitution therapy. However, drug
treatment clients’ total mortality is likely to be twice their DRD rate, see Merrall et al
(2010).

4.3. Marginal Log-linear Probabilities
The corresponding marginal posterior probability that each covariate is present in the model
for each separate region is provided in Table 6. Note that we identify evidence of the presence
of an interaction when the posterior model probability is ≥ 0.75, corresponding to a Bayes
factor of ≥ 3 (Kass and Raftery, 1995). There are several points of interest. Multiple
interactions are clearly important across all regions, namely, S1 × S2 (probation data ×
DIP prison assessment data); S1×S3 (probation data × drug treatment data); S2 × Sex; S2
× Age; S4 × Age (DIP community assessment data × Age). For all these interactions, the
sign of the interaction is consistent across all regions. In particular, decreased probability
of being observed by source S2 (DIP prison assessment data) for females and the older age-
group; a decreased probability of being observed by source S4 (DIP community assessment
data) for the older age group; and positive interactions for S1×S2 and S1×S3, which are
precisely the sort of cross-linkage that policy initiatives had been designed to engender.

There are some discrepancies over the different regions regarding the presence of partic-
ular interactions. These include:

- Regions 3 (London) and 9 (Yorkshire and Humber): the only regions to identify the
interaction S2×S3 (DIP prison assessment data × drug treatment data), despite large
investment in the DIP initiative to lead to increased drug treatment. As we would
expect, when this interaction is identified, it is estimated to be positive. We note
further that the presence of this interaction in region 9 (Yorkshire and Humberside)
and absence in region 4 (North East) may explain the lower injecting DRD rate in
region 9 compared to region 4 despite both being high injector prevalence areas, as
shown in Table 4.

- Region 3 (London): the only region that identifies the interaction S3 × Age, with
older individuals more likely to be observed by the treatment data. However, for this
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Table 6. Marginal posterior probability for each two-way interaction being present in the model for each region. Recall that S1 =
probation data; S2 = DIP prison assessment data; S3 = drug treatment data; S4 = DIP community assessment data.

Interactions Region

Source × Source 1 2 3 4 5 6 7 8 9

S1× S2 0.993 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
S1× S3 0.995 1.000 0.950 1.000 1.000 0.996 0.993 1.000 1.000
S2× S3 0.069 0.049 0.974 0.143 0.053 0.157 0.064 0.073 0.962
S1× S4 1.000 1.000 1.000 1.000 1.000 0.354 1.000 1.000 1.000
S2× S4 1.000 0.998 1.000 1.000 1.000 0.085 0.671 1.000 1.000
S3× S4 0.058 1.000 0.993 1.000 1.000 0.183 0.993 1.000 1.000

Source × Covariate

S1 × Sex 0.047 0.139 0.175 0.031 0.999 0.110 0.995 0.995 0.566
S2 × Sex 0.999 1.000 0.793 0.962 1.000 0.998 1.000 1.000 1.000
S3 × Sex 0.979 0.977 0.972 0.077 0.029 0.038 0.156 0.064 0.031
S4 × Sex 0.105 0.436 0.328 0.823 1.000 0.914 1.000 0.953 1.000
S1 × Age 0.678 1.000 0.118 1.000 1.000 0.984 1.000 0.972 0.938
S2 × Age 0.933 1.000 0.999 1.000 1.000 1.000 1.000 1.000 1.000
S3 × Age 0.110 0.057 0.999 0.308 0.027 0.042 0.058 0.061 0.063
S4 × Age 0.997 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Covariate×Covariate

Age × Sex 0.999 0.786 1.000 1.000 1.000 1.000 1.000 0.500 1.000

region, the interaction S1 × Age is not identified whereby, in other regions, fewer
younger individuals are identified via source S1 (probation data) though the presence
of the interaction is not strong in region 1 (East of England).

- Region 6 (South East): does not identify the interactions S1× S4 and S2× S4, (be-
tween DIP community assessment data and probation data and DIP prison assessment
data, respectively) although positive interactions between these sources are strongly
identified for all other regions with the exception of region 7 (South West) for the
S2 × S4 interaction where there is reasonable uncertainty as to its presence. Once
more we note that, as would be expected for the interaction between the two DIP
assessments, it is identified as a positive interaction.

- Regions 1 and 6 (East of England and South East): do not identify the interaction
S3 × S4 (treatment data and DIP community assessment data), although this is
strongly identified as positive in all other regions, which again is a sought-after cross-
linkage.

- Region 8 (West Midlands): provides uncertainty regarding the presence/absence of
an interaction between Sex × Age, which is identified by the other regions. When
present, the interaction corresponds to fewer females being at the older age-group (or
conversely more males in the younger age-group).

Finally, we return to the comparison of results obtained within this analysis and those of
Hay et al (2009). Recall that Hay et al (2009) consider the data at the DAT area level, did
not include the covariate information and considered only the set of log-linear models with a
maximum of two source × source interactions. For all regions, except region 6 (South East),
the number of source × source interactions identified in our models typically lies between 4
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and 6. Further, all of the source × source interactions that are identified with large posterior
support for each region have a posterior mean that is positive. Thus, not including such
interactions (as for 8 of the 9 regions) leads to the decreased estimate of population size
obtained by the previous analysis of Hay et al (2009), rather than differences due to the
use of the lower DAT area level data and ignoring the gender and age-group covariate
information. For region 6 (South East), Hay et al (2009) provide an overall estimate and
95% confidence interval (rounded to nearest 10) of 13270 (10290, 16380). This is reasonably
comparable to the estimate provided in Table 2 for this region, with both point estimates
contained in the alternative analysis’s uncertainty interval but this is not the case for any
other region.

5. Discussion

Estimating the number of IDUs and the injecting DRD rate is an inherently difficult problem
due to the nature of such hidden populations who, nonetheless, have a clear social and
economic impact within society. The use of log-linear models is appealing due to their direct
modelling (and interpretation) of interactions between the different data sources and/or
covariates which are likely to be present within such complex systems. Using characteristics
as covariates (gender and age-group) permitted cross-classified estimates for males and
females in each age group (15-34, 35-64) for each region, and the identification of more
complex underlying structure and/or patterns. For example, for female IDUs in the North
East, an unusually high proportion are younger individuals (15-34) with a posterior mean
(95% CI) of 5.41 (4.41, 7.71) of the younger to older (i.e. 15-34 to 35-64) ratio. Conversely,
for male IDUs, the mean younger to older ratio is very similar to the overall mean ratio for
England. We also note that, consistently within each region, and aggregated to the England
level, the younger to older ratio is higher for females than males, indicating that a larger
proportion of younger IDUs are female than of older IDUs.

We combine the estimate of number of IDUs with the number of injecting DRDs to
obtain an estimate of the injecting DRD rate. Within our analysis, we take the number of
injecting DRDs to be the average annual number of heroin-related deaths in each region
over the period 2004-7. Thus, we do not include any level of uncertainty on this estimate
of injecting DRDs so that all the variability in our estimates of injecting DRDs comes from
the uncertainty in the estimates of population size. Similarly the prior interval specified on
total population size comes from the uncertainty interval placed on injecting DRD rates.
Adding uncertainty to the number of DRDs per region would increase the prior interval
on total population size, but this would have little impact on the posterior estimates of
prevalence of IDUs since the posterior distributions are largely data-driven (although doing
so may create greater overlaps between the prior and posterior estimates of population size).
Consequently, assuming a Poisson distribution, say, for the annual number of DRDs (with
mean equal to the observed annual mean number of deaths) would result in essentially the
same posterior mean for the injecting DRD rate, but with an inflated credible interval width
to reflect the additional level of uncertainty incorporated.

The estimates of IDU prevalence and injecting DRD rates are model-dependent. In
other words, the interactions present have a direct impact on the estimates obtained for the
total population size, and hence on the injecting DRD rates. We used a model-averaging
approach to incorporate both parameter and model uncertainty within the estimate for
total population size, and associated statistics. However, the underlying model itself is also
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of interest in terms of the propensity to be listed on a different source given observation (or
not) on another source via source × source interactions. This provides direct insight into
cross-linkages between the different data sources, and potentially insight into differences
across regions. In particular, missing cross-linkages, which DIPs were designed to facilitate,
were identified for regions 1 and 6 (East of England and South East) which have low injector
prevalence per 1,000 of the population aged 15-64 but also high injecting DRD rates. Our
analysis may lend ecological support to the notion that if the DIP sought-after cross-linkages
are not properly in place, regions may experience higher injecting DRD rates. In Yorkshire
and Humberside, where cross-linkages between DIP prison assessment and treatment data
was identified, injecting DRD rates appeared to be lower than the overall averaged England
estimates but the relatively youthful profile of the region’s current injectors needs to be
addressed separately.

That so many positive source × source interactions were supported by the data from
English regions signals the success of cross-departmental initiatives for criminal justice to
recognize opiate/cocaine dependency or injecting risk and to encourage relevant arrestees,
probationers or prisoners to engage with drug treatment agencies. By the same token, it is
unwise for those who commission capture-recapture studies to prescribe how the analysis
shall be tackled. Insistence on injector estimates at the level of DAT area means that, were
there to be 64 cross-counts as here per DAT area, many cells would be empty and more would
have only low counts so that accommodation of many source × source interactions, despite
their relevance, becomes both technically and computationally infeasible. To the extent
that England’s number of current injectors would typically be under-estimated and injecting
DRD-rates over-estimated, the impact of opiate-substitute therapy on saving life may be
under-estimated. In addition, complacency may be engendered about the transmission risk
for blood-born viruses by dint of under-estimating potential transmitters, namely infectious
current injectors.

The generally lower injecting DRD rates for England than in Scotland, the basis for
our priors, suggests that Scotland could learn from the cross-linkages that England has put
in place. Discussion of source × source interactions with regions’ criminal justice or drug
treatment practitioners may shed further light on their regional implications when local
expertise is brought to bear on their interpretation. This analysis is broadly reassuring that
criminal justice and drug treatment interventions have delivered but there are concerns also
- particularly for those regions in which injector ratios by age-group (15-34 to 35-64) are
high and thereby suggest an unwelcome preponderance of younger injectors, which means
that greater resistance to injecting needs to be engendered in young people.

Acknowledgements

We would like to thank the Home Office and the research team at the Centre for Drug
Misuse Research for providing the requested cross-count contingency table data, Clau-
dia Wells at the Office of National Statistics for the requested number of drug-related
deaths by toxicology and cross-classified by region, sex and age-group and Tim Millar for
some useful discussions. SMB is funded by the Medical Research Council (WBS num-
ber U.1052.00.002.00001.01) and RK was partly funded by the MRC Addiction Research
Cluster, NIQUAD (Nationally Integrated Quantitative Understanding of Addiction Harm).



Estimating IDUs in England 19

A. Calculation of Jacobian

We provide the calculation of the Jacobian in the transformation of variables from the prior
on the parameters Ntot, R, P1, P2, on which the prior information is specified to the model
parameters N = {N(M,15−34), N(F,15−34), N(M,35−64), N(F,35−64)}. We have the relationship
between these parameters of the form.

Ntot = N(M,15−34) +N(F,15−34) +N(M,35−64) +N(F,35−64);

R =
N(M,15−34) +N(M,35−64)

N(F,15−34) +N(F,35−64)
=

N(M)

N(F )
;

P1 =
N(M,15−34)

N(M,15−34) +N(M,35−64)
=

N(M,15−34)

N(M)
;

P2 =
N(F,15−34)

N(F,15−34) +N(F,35−64)
=

N(F,15−34)

N(F )
.

Consequently, the corresponding Jacobian is given by,

∣∣∣∣d(Ntot, R, P1, P2)

dN

∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1

1
N(M)

− N(M,15−34)

N2
(M)

−N(M,15−34)

N2
(M)

0 0

1
N(F )

1
N(F )

−N(M)

N2
(F )

−N(M)

N2
(F )

0 0 1
N(F )

− N(F,15−34)

N2
(F )

−N(F,15−34)

N2
(F )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

N(M,15−34) +N(F,15−34) +N(M,35−64) +N(F,35−64)

N(M)N
3
(F )

=
Ntot

N(M)N
3
(F )

.

This result is easily obtained using an algebraic computer package, such as Maple.
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