
Macro actions for structures

Alan Lindsay
University of Strathclyde, Glasgow

alan.lindsay.100@strath.ac.uk

Abstract

It is not surprising that structures underly many of the prob-
lems that we find interesting in planning. However, the plan-
ners that we develop are not always capable of acting on
them as they increase in size. For example, the errors caused
through relaxations in a heuristic can grow quickly when act-
ing on a structure. Macro actions can help to compensate for
heuristic error; however, researchers have investigated finite
length macro actions limiting the benefit when the underly-
ing problem is an arbitrary sized structure. In this work we
design a specific set of arbitrary length macros, providing a
vocabulary for acting on structures.

1 Introduction
The main focus of research in automated planning has inves-
tigated forward chaining approaches. The solution is con-
structed from beginning to end, which means the current
state is always known. Over the years heuristics have de-
veloped and are now effective for planning in many problem
domains (Hoffman and Nebel 2001). These heuristics have
limitations that have motivated researchers to investigate ap-
proaches to supporting them with domain specific control
knowledge (Coles and Smith 2007).

The language that is used to model planning problems is
intended to be appropriate for expressing the solution. This
has inspired researchers to investigate alternative languages
that are appropriate for planning (Coles and Smith 2007;
Botea et al. 2011). An approach that has received a lot of
attention is to enhance the model with macro actions, which
are formed by linking together sequences of actions (Coles
and Smith 2007; Botea et al. 2011). This approach has the
advantage that the reachable states are the same in both mod-
els; while also providing a new level for planning.

The process of generating macros in MacroFF (Botea et
al. 2011) begins by dividing the domain structure into com-
ponents: each component gathers together a group of ob-
jects that act together. The motivation is that tasks often
require a number of preparation actions and these actions
can be grouped into a useful abstraction. We have observed
that planning problems often involve sequences of structure
interaction that have arbitrary length. For example, in trans-
portation problems, transporters are moved around a map
redistributing packages and in structure building problems,

blocks are joined together and removed to construct a struc-
ture.

In these problems behaviours are often repeated over a
number of nodes in the structure. For example, a sequence of
picking up and dropping off blocks in a Blocksworld prob-
lem. However, the sequences are acting towards a single
higher level target, such as uncovering a specific block in a
pile. This has motivated us to investigate a new problem lan-
guage that allows the planner to make choices at this target
level.

Our approach is to generate a collection of macro ac-
tions that provide specific behaviours on structures. We rely
on the domain analysis tool TIM (Fox and Long 2001) and
uncover two specific structure interaction problems: graph
traversal and structure building. Many of the benchmark
planning problems exhibit an aspect of one of these prob-
lems or both. We identify two key interactions on these
structures and define the targets of these sequences. We then
use training data to seed our macro actions.

We begin by presenting the background, we introduce the
two key structure interactions and a selection of sequences
that are important for solving these tasks. We continue by
presenting our framework for generalising these sequences
and presenting them as arbitrary macro actions. We survey
the related work, evaluate the macros actions by providing
them as options during search and make our conclusions and
propose future work.

2 Background
A planning problem, P = �S,A, si, g� can be represented
as a set of states, S, a set of actions, A, an initial state, si,
and a set of goal propositions, g. In this work, we represent
states by a set of propositions, and the actions as three sets of
propositions: the precondition (aPRE) and the add (aADD)
and delete (aDEL) effects. We use s� = a(s) as a function
that returns the state after applying the action (s� = (s \
aDEL) ∪ aADD), defined for aPRE ⊂ s.

A solution to a planning problem is a plan, π =
a0, . . . , an−1, such that s1 = a0(si) sn =
an−1(sn−1) . g ⊂ sn. The plan is represented using the
actions of the model; this means that the language of mod-
elling and as a result planning is dictated by the desired plan
language.

A common approach to discovering plans is to use heuris-
tic guided search. Several heuristics have been developed
that perform well on many problems. However, with any
heuristic there are inevitably problems that have search
spaces with local minima in the heuristic landscape. In par-
ticular, the depth of these local minima will determine how
they impact on search. This has motivated researchers to
investigate alternative problem model languages that reduce
the depth of these local minima.

Macro actions provide a way of decoupling the language
of the plan from the language used for planning. A macro ac-
tion is an action sequence, a = a0, . . . , an−1 that is applied
as a single action. The state successor function is extended:
s� = a(s) = an−1(. . . a0(s) . . .). These actions are gen-
eralised to macro operators by replacing the constants with
free variables. A substitution, Θ = {c0 ← v0, . . . , cn ←
vn}, ∀ j ∈ [0, . . . , n] vj ∈ Vmop, replaces the variables in
the macro with problem constants. Application of a macro
operator is valid for a given substitution and state, if the ac-
tion sequence after substitution can be applied to the state.

In (Coles and Smith 2007) macro operators are used to
reduce the depth of local minima for planner FF (Hoffman
and Nebel 2001). FF uses an enforced hill-climbing search,
guided by the relaxed planning graph (RPG) heuristic: an
estimate of distance to goal based on generating a plan for
a relaxed problem. The relaxed problem is the problem re-
modelled so that the actions do not have delete effects. One
derivative of the heuristic computation is a filtering function
called the helpful actions (Hoffman and Nebel 2001).

Macro actions allow the planner to step through parts of
the search space where it cannot plan effectively. A particu-
lar example of this is sequences of actions on structures: the
error caused through relaxations in a heuristic can become
exacerbated if acting on a structure. In (Hoffmann 2005)
it is reported that 7 of the benchmark problems have RPG
heuristic landscapes with arbitrarily deep local minima. A
benefit of the approach presented in (Coles and Smith 2007)
is that the macros are learned during planning. This means
that their length is related to the problem structure. However,
these learned macros are still of a fixed length. If a later part
of search requires acting on a larger (or smaller) part of a
structure then their assistance might be limited. In particu-
lar, the learning approach relies on the planner’s ability to
solve the problem the first time. One aspect of our research
has investigated whether using arbitrary length macros is an
effective approach to reducing the local minima.

3 Structures in planning
Structures in planning are used to represent various different
relationships. These include: the spatial relationships be-
tween objects in the world, such as can reach or can see; and
counters that limit the use of a resource, such as fuel-level.
The domain analysis tool TIM uncovers implicit properties
of the domain. It can be used to identify a wide variety of
traversal problems (Fox and Long 2001) and we have used
the properties to uncover some types of structure building
problems.

In this section we introduce the two common structure
interactions that occur in the planning benchmarks: graph

traversal and structure building.

3.1 Graph traversal
Graph traversal problems involve moving an object through
a constrained structure. This is particularly important for
modelling problems with important spatial relationships. In
these problems traversers move between different locations
on a map. The location of the traverser constrains the actions
that the traverser can perform. For example, in a transporta-
tion problem, a traverser picks up packages, but this can only
be done at its current location.

A key aspect of the graph traversal problem is the action
that moves objects between locations. The move action,
(moveAction t l l�), has three parameters: the traverser, t,
the traverser’s current location, l, and the destination of the
move, l�. The set of objects that can be moved by the move
action are called the traversers and denoted T. The set of po-
sitions that an object can be located are called the locations
and are denoted L.

The TIM analysis identifies transitions between relation-
ships of the same type; in particular, an action that changes
the location of a traverser from one location to another.
There are two main traversal problems: transportation prob-
lems, for example, Logistics and Driverlog; and path open-
ing problems, for example, Grid and Goldminer. Both of
these can rely on a collection of carriables, C, that are picked
up by the traverser. For example, packages in transportation
and keys in path opening problems.

3.2 Structure building
Structure building problems involve connecting similar ob-
jects together to form a particular structure. A key concept
when planning in a structure building problem is whether the
current structure is correct. This requires an understanding
of reachability and the structure that is to be built.

A structure building problem is characterised by an attach
action, (attach o1 o2), and a detach action, (detach o1 o2),
each with two parameters: the two connected or connecting
objects.

In the benchmark problems the structures are defined in
goals; however, they could also exist as the precondition to
an action. In this work we are interested in structures that are
defined in the goal of the problem as these structures might
be required to be of arbitrary size. Structures required to
satisfy action preconditions have only to be of fixed size.

4 Sequences of structural interaction
We often have to perform the same task on an arbitrary
set of the nodes of a structure. For example, in traversing
a graph we might move between connected nodes; and in
Blocksworld we might uncover a block by repeatedly un-
stacking blocks that are sitting on top of it. In this section
we define two important structure interactions and establish
a set of rules that determines the reason for the interaction.
For example, a traverser is moved through the structure to
pickup a package. Identifying these targets is an important
step in our macro generation process.

4.1 Traverser reachability
A common task in traversal problems is moving the traverser
to targets. To move a traverser between locations can require
both move actions and additional enabling actions. We use a
dependency graph to identify the thread of actions that con-
tribute to the movement of traverser.

Dependency graph The achievers of an action’s precon-
ditions are made explicit in a dependency graph. We de-
fine this for a plan, π = a0, . . . , an, and problem model,
P = �S,A, si, g�. The vertex set contains all of the ac-
tions (with suitable relabelling where duplicate actions exist
in the list): V = {aj}. The edge set connects the action that
achieves a proposition with actions that require the proposi-
tion to fire:

E = {ai → aj |∃p maxi(p ∈ aiADD)∧p ∈ ajPRE∧i < j)}.

Move relevant actions For a given plan, π, and traver-
sal behaviour we can define the set of move actions as
MoveActionsπ and the move relevant actions in the fol-
lowing set. These are simply the actions that are move ac-
tions, or actions that enable a move action:

MoveRelevantActionsπ = {a ∈ π |
∃(a0, a1) ∈ E, . . . , (an−1, an) ∈ E

an ∈ MoveActionsπ}

Targets The thread of move relevant actions can be split
into sequences that achieve a particular target. For exam-
ple, in a transportation problem each package introduces two
definite targets: its current location and its destination. How-
ever, there are some targets that are not as clearly defined.
For example, in Goldminer problems we must drop the laser
in order to pick up the bomb. The laser will have served
its purpose and has no goal: it does not matter where it is
dropped and so is not a target.

We define the following rules for breaking traverser
threads into sequences:

1. Move to goal : a goal achieving action is enabled by a
move action.

2. Pickup carriable (either a package or enabler)
3. Drop-off package (not an enabler - unless achieving its

goal)
4. End of an opening episode (where the current enablers

were sufficient for the traversal task)

These four rules provide a strategy for breaking up any
thread of traverser relevant actions. An important motivation
of moving is to support achieving a goal. This is common to
each of the categories of traversal problems. Similarly it is
usually necessary to move to pick up objects, either to dis-
tribute or to aid traversal. However, we have observed that
the position an object is dropped off at is usually only im-
portant for transportation problems. Rule 1 partially covers
situations where this is not true. The final rule is relevant for
path opening problems. The sequence should not be sepa-
rated at each opening, because there may be several in a row.

Instead the sequence should be broken by the last opening
action achieved using the current enablers.

In addition, once split into a sequence, an action that does
not enable later parts of the sequence are pruned. We discuss
our assumptions below.

B

$

Figure 1: PExample, an example problem. The objects are
named: robot, r; laser, l; bomb, b; and the location in row, i,
and column, j, is called lij . The goal is to pick up the gold.

We use the example illustrated in Figure 3 to make the ap-
plication of the rules more clear. The purpose of Goldminer
problems is to open up a path so that the robot can pick up
the gold. The only action that is not relevant to moving is the
final pick up action. There are usually four targets in Gold-
miner problems: pickup the laser; fire to one location from
the gold; pickup the bomb; pickup the gold. The problem in
Figure 3 can be solved with the following steps:

1. move r l00 l10

2. pickup r l l10
2

3. move r l10 l20

4. fire r l l20 l21
4

5. drop r l l20

6. move r l20 l10

7. pickup r b l10
2

8. move r l10 l20

9. move r l20 l21

10. blow r b l21 l22

11. move r l21 l22
1

12. pickGold r l22

The target actions are marked in red with the breaking
rule index in superscript. Action 5 will be removed from
its sequence as it does not enable anything in the chain. As
the grid grows in size the number of actions between targets
increases. For example, the laser might be located four steps
away from the robot’s starting location. The length of these
sequences are determined by the problem instance and are
therefore of arbitrary size. Figure 2 illustrates the structure
that is navigated for the robot to reach a square away from
the gold. The general form of the resulting sequence is:

$

lj0 lj1

li0

... ljn

Figure 2: The robot moves through a sequence of moves
then fire move pairs.

move r li0 l(i+1)0;
. . .

move r l(j−1)0 lj0;
fire r l lj0 lj1; move r lj0 lj1;

. . .
fire r l lj(n−1) ljn; move r lj(n−1) ljn

4.2 Unstacking a block
The most common structure building problem in planning
is the stacking problem. We have limited our study to this
form of structure building problem. The structures that are
acted on in these problems are stacks and the planner is lim-
ited to interacting with the structures from its top element.
We assume there is a storage space with sufficient room, for
example a table. A necessary sequence acted on these stacks
is uncovering a block from a structure. Uncovering blocks
requires a chain of actions that iteratively removes blocks
from a structure. Each of these removal steps might require
several actions: if the movement of a block is separated into
distinct actions, or if the actions need enabled.

The relevant actions can be extracted, selecting those ac-
tions that enable the removal step actions (for example the
pickup and put-on-table actions in Blocksworld), in a similar
method as for traversal actions. The target for an uncovering
block problem is that a particular block is free to be picked-
up. We use a structure to determine whether a block was an
important target.

Figure 3: Example structure, with old-connections in black
and below-connections in purple. When white is put on
green we examine the stack old-connections and find that
red is on black.

The structure updates two distinct sets of connections that
record the previous stack of a moved block. When a block
is detached from a stack a below-connection is made with
each block underneath it. When the block is attached to a
new stack an old-connection is made with its old stack. If a
moved block is already connected then we do not update the
connections. If it has been attached to an intermediary stack
then this could have been achieved using the table. We use
this structure to determine whether uncovering a particular
block was the target.

We define the following rule to divide the thread of stack
interactions into sequences:

1. A block, b, is a target if: b is being attached; b will
not be removed; and each of the blocks that have old-
connections to b’s stack are in the final state not in stacks
above blocks that are below-connected to b.

This last property states that if a block was underneath b
and will be underneath a block that has been moved from
b’s stack then it was the reason that b was moved. Therefore
unstacking b was not a target. This allows us to break the
thread into single sequences that achieve important target. In

the next section we describe a strategy for generating macro
actions from these sequences.

4.3 Assumptions
In this section we have made two assumptions about the
traversal threads of interaction:

• single independent subgoals that require a traverser at a
particular location are identified by the targets;

• plans demonstrate a single traversing thread.

The first assumption means that any action in a sequence
is contributing to moving the traverser to a specific location.
The intention is that the target rules break the chain at the
important subgoals. If important subgoals are achieved dur-
ing a chain then the generalised representation of this chain
will not enforce this. We have generated the rules based
on a survey of the benchmark domains and defined them in
terms of general properties of these types of problem. The
second assumption means that we do not require to unpick
a thread of movements from a sequence. This has the side
effect that underlying the macros is the assumption that tra-
versers are independent of each other. These assumptions
hold in most benchmark problems. We believe that separat-
ing out the threads of traverser moves is possible and pose it
as future work.

5 Arbitrary macro actions
In this section we present our representation for arbitrary
macro actions. We use macro operators as the building
blocks that capture sequences of actions. We generate the
set of all states reachable through application of these macro
operators.

In this section we define our training data representation,
our approach to generalising the sequences we defined in
Section 4 and how these are used to generate macro actions.

5.1 Training data
We use training data to guide the action sequences that we
consider. The domain conventions often greatly reduce the
possible chains of actions. We want to exploit this to ensure
the number of macros remains as small as possible. We also
appeal to the assumptions made of the sequences.

In this section we rely on training data in the form of prob-
lem plan pairs:

�(|π0|,P0), . . . , (|πn|,Pn)�.
For example, the problem, PExample, and the plan presented
in Section 4 could act as a training data pair.

5.2 Bags of macro operators
The use of macro actions is effective because in many prob-
lems short sequences of actions combine to perform a single
task. We observe that when acting on a structure we often
aim to perform a single task at each of a series of nodes.
The precise details of how this tasks is achieved might vary:
for example, some nodes might require preparation. Our
approach is to observe each action sequence that is used to
achieve a task and group them into bags:

Definition 5.1 A bag of macro operators is a set:
macroBag = mop0, . . . ,mopn over distinct variable
sets: ∀i, j ∈ [0, . . . , n] i �= j =⇒ ∀v ∈ Vmopi v �∈
Vmopj .

For example, consider the target of opening the location
next to the gold in Goldminer. At each individual node we
can focus on two possible moves: move the robot into an
open square; shoot at rock and move into the square. Alter-
native action choices, such as putting the laser down, are not
important to the current target. These two alternatives each
make a single movement. They can be represented by macro
operators and we can define a bag fireMoveBag:
• (move ?robby ?l1 ?l2);
• (fire ?robby ?laser ?l1 ?l2), (move ?robby ?l1 ?l2).

The two fire actions share variables with the subsequent
move actions. This means that the operators perform a sin-
gle task of moving the robot to an adjacent square, perhaps
opening the square first.

In general we can construct bags of operators that support
all of the behaviours that we may require at a particular node.
If this is done in the context of a particular target, then we
can reduce the possible chunks to a useful subset.

Chunking a sequence In Section 4 we defined an ap-
proach to generating sequences. Each sequence includes
several examples of the actions that are applied at each node.
We now use these sequences to generate macro bags.

Each interaction action with its enablers is an example of
a possible approach to interacting with the structure. We
call each of these possible interaction situations a chunk. A
chunk is a subsequence that extends from either the begin-
ning of a sequence, or the action after an interaction, to the
next interaction action. For example, the sequence we pre-
sented in Subsection 4.1 breaks into chunks:

(move r li0 l(i+1)0)
. . .

(move r l(j−1)0 lj0)
(fire r l lj0 lj1; move r lj0 lj1)

. . .
(fire r l lj(n−1) ljn; move r lj(n−1) ljn)

Each chunk is generalised by replacing the constants with
variables. Each chunk defines a macro operator and we con-
struct a bag from the macros of a sequence. In the above
example the chunks collapse into fireMoveBag. Informally,
for unique chunks, c0, . . . , cn in a sequence, we generate an
action with regular expression: (c0| . . . |cn)∗. We make this
formal below.

This approach of combining the macros collapses any
constraints in the order of execution. Part of our future work
will examine the effect of maintaining a graph that records
when a chunk is observed after another chunk. This graph
could then be used to restrict the valid bag expansions.

Reachability graph for bags The reachability of a bag
can be represented as a graph. The nodes are states and the
edges are the instantiations of the macro operators in the bag.
There are binding constraints associated with the bags that
ensure the sequence contribute to a single interaction. These

are that the same traverser is moved, or that the same stack
is popped. The edge weights are a count of the number of
actions in the macro. A target is reachable from the current
state with a bag if there is a path in the reachability graph
from the current state to a state that satisfies the target.

5.3 The macros
A set of macro actions is computed at each state. The reach-
ability graph is computed. For each target discovered in the
reachability graph a macro action is defined. The sequence
of enablers and moves made to reach the target are wrapped
up in a single option for the planner.

6 Filtering the macros
The set of macro actions that we have generated in Section 5
can be large (intractable). Adding macro actions does not
increase the total number of states in the model; however,
the branching factor quickly increases. In this section we
consider three approaches to reducing the set of macros.

6.1 Target significance
The graph that we have proposed is potentially large. We
aim to allow the planner to achieve specific targets directly.
However, the macro set that we proposed is likely to have
many states that achieve the same target; illustrated in Fig-
ure 4. Moreover there are many paths to each target, creating
a significant search space. We have observed that often any
path that achieves a target can be extended to the reach the
same set of targets. We limit this set to a single macro per
target (4b) and expand a single state from each target (4c).

(a) (b) (c)

Figure 4: Example of bag expansion using 4a state indexing;
4b the result when it is projected into the target space; and
4c the expansion using target significance.

We use the target as the index during expansion. The
graph is generated in a breadth first search and the first
achiever of a target is selected. A chain is only continued
if it achieves a target that has not been discovered already.
We define the property target significance that holds if the
target of the sequence discriminates enough, so that if any
two states have the same target, then they are extendable to
the same targets.

We have experimented with using training data to deter-
mine whether the chains are target significant; however, our
assumptions and the selection of rules we defined in Sec-
tion 4 lead to target significant chains in the domains we
have experimented with.

6.2 Target identification
We have generated a set of macros that allow the planner
to perform structure interaction in single steps. However,
there are many nodes in the structure that are not interesting.
For example, a location in a transportation problem with no
goals or packages at it. In particular, we have already de-
fined a set of rules that determine the targets for the structure
problems. If these rules do not require knowledge of future
steps then it is possible to use the rules to determine whether
a macro action concludes at a target node.

We define the property satisfies rule that holds for a triple,
(s, a, g), if the macro action, a, current state, s, and goal,
g, satisfy one of the rules. The macro actions that have
been generated are only added to the problem model if
this property holds. An example transportation problem
has a truck, t, package p, and two locations, l1, l2, with
s = (in p t) ∧ (at t l1) and g = (at p l2). There are
two macros: (move t l1 l2) and (move t l1 l1). The pack-
age goal at l2 means that the satisfies rules property holds
for the former macro through rules 1 and 3 and is retained.
However, the latter macro does not satisfy the property and
this macro is pruned.

The rule defined for structure building requires knowl-
edge of the future and could not be used for pruning. It
is clear that this approach can remove useful targets, for ex-
ample, putting a package down at a hub location. However,
these actions are still possible by selecting problem model
actions.

6.3 Forcing the use of macros
A final strategy we have investigated is forcing the use of
the macro actions. This can be achieved by identifying all of
the actions that are part of the macro sequences and prevent-
ing the planner from selecting these actions unless within a
macro action. The actions removed for the fireMoveBag are
fire and move.

7 Experiments
Our experiments aim to investigate the suitability of struc-
ture interaction macros as a support for heuristic planning
and whether arbitrary length macros can be part of an ef-
ficient solution to the planning problem. We present a pre-
liminary investigation that answers these questions using the
results from two domains.

The basic search (Basic) uses an enforced best-first
search, informed using the relaxed-plan heuristic (Hoffman
and Nebel 2001). A breadth first expansion is used on reach-
ing local minima1 that expands in layers until an improving
node is discovered. We use the helpful actions filter first
and restart if no improvement. This is similar to FF (Hoff-
man and Nebel 2001); however, we select the best discov-
ered neighbour and not the first improving. Our solution is
developed within JavaFF (Coles et al. 2008), which has im-
plications for its efficiency.

For each domain we generate a set of macro actions us-
ing the approach presented in Section 5; we then test these

1Actually at a plateau or local minima.

actions by incorporating the macros into our search strategy
in two different ways: throughout search and to escape local
minima. In our experiment we compare these two configu-
rations with the basic search approach.

An interesting aspect that we investigate is whether the
search time increases due to the increased branching factor.
We can determine this by comparing the search time when
using the macros either throughout search or for escaping
local minima with basic search.

The heuristic is not informed with the length of the macro
actions. This lack of information could have a large im-
pact on the quality of solutions. It is therefore interesting
to examine the quality of solutions in comparison with basic
search.

7.1 Macros in search (SeqFF)
The first approach is to allow the planner to select from ei-
ther the described actions or the macros at each search step.
During best-first search the helpful actions are generated.
The reachability graph is computed for each bag at each
state. The target states are added to the states computed by
applying each helpful action to the current state. The state
with the lowest heuristic score is selected.

When search finds a local minimum we use a modified
approach. We enforce that a macro action cannot be applied
directly after another and we force the use of the macro us-
ing the above approach. We have also used this configura-
tion with no macro force in Goldminer for comparison (No-
Force). All of the states are added to the open list and ex-
panded in the next layer. If the current layer contains states
with lower heuristic than the local minimum then the best of
these states is selected and best-first restarts from this state.

7.2 Macros for escaping local minima
(MinimaEscape)

The second approach is to use the helpful actions during the
hill-climbing search, but allow the planner to use either the
described actions and the macros during the local minima
escaping expansion. This approach was used in (Coles and
Smith 2007); however, the macro actions had finite length.
This configuration is interesting because we can investigate
whether structures impact on the ability of search to escape
from local minima.

7.3 Results
We have used these approaches to solve problems from two
benchmark domains. In this study we have only investigated
our approach on problems with traversal subproblems; how-
ever, we do predict expected results for structure building
problems.

Goldminer The first domain that we apply our strategy to
is the Goldminer domain. This domain was not surveyed
in (Hoffmann 2005); however, it is clear that Goldminer
problems contain arbitrary local minima for the RPG heuris-
tic. This is because at the stage where the robot has cut a
path to one step from the goal with the laser, the heuristic
has estimated that all that is required is for the robot to fire
the gold square, drop the laser and run in to claim the gold.

1

10

0 10 20 30
Pfile

Ti
m
e

Planner
SeqFF
MinimaEscape
Basic
NoForce

Figure 5: Time results for Goldminer domain.

0

10

20

30

40

50

0 10 20 30
Pfile

Q
ua
lit
y

Planner
SeqFF
MinimaEscape
Basic
NoForce

Figure 6: Quality results for Goldminer domain.

However, the robot needs to travel a number of steps (de-
termined by the initial state) to pickup the bomb. Moreover
the state space of Goldminer is very large and the breadth
first expansion is very expensive. If the grid is size n and
the bomb is positioned m steps away from the path that was
cut out to the gold then the local minima will be of depth
2(n − 1) + 2m + 2. In contrast, the macro actions that we
have proposed reduce this local minima to a depth of 4.

The generated bags were:
• move*
• (move | fire; move)*
• (move | detonate; move)*

The time and quality plots are presented for 30 problems
distributed as part of the first learning competition (Fern,
Khardon, and Tadepalli 2011). These problems have been
remodelled to remove the conditional effects and implicit
objects. The time results are in seconds and plotted on a
log-scale axis. The quality results are in plan steps. Failed
execution is plotted as a missed point on the time axis and

1

10

100

5 10 15 20
Pfile

Ti
m
e

Planner
SeqFF
MinimaEscape
Basic

Figure 7: Time results for Driverlog domain.

0

25

50

75

100

5 10 15 20
Pfile

Q
ua
lit
y

Planner
SeqFF
MinimaEscape
Basic

Figure 8: Quality results for Driverlog domain.

as −1 on the quality plot.

Driverlog We have chosen Driverlog as it has an under-
lying graph structure and is one of the domains reported
to have arbitrary local minima (Hoffmann 2005). We have
plotted the time, Figure 7 and quality, Figure 8 results on
the 20 problems generated for the third planning competi-
tion (Long and Fox 2003). The plots are presented in the
same way as for Goldminer.

The generated bags were:
• drive-truck*
• walk*

7.4 Comparison
The results for Goldminer demonstrate that structure based
macro actions can be an effective support for the RPG
heuristic. The base line search solves 3 problem, while both
approaches using macro actions solve 28 of the 30 prob-
lems. The time results demonstrate that using the macro ac-
tions during search can make substantial improvements on

time over restricting use to the minima. However, more fre-
quent use of macros has a negative effect on plan quality.
The missed problems are caused by the heuristic’s favour
towards using the bomb: it gets a free hand and an open
square. In most cases a plateau is entered and the benefit of
the macro actions are discovered. This would be solved if
the macros were part of the heuristic computation. In this
experiment the macro force filter is acting to prevent the se-
lection of the detonate action. It is therefore important to
note that the macros are not solving the problem of unde-
tected dead-ends in Goldminer.

As can be observed from the Driverlog plots, on most
problems the macros make little difference, on some the
macros perform worse. One reason for this is that the depth
of the local minima depends on the difference in distance
between the drivers’ map and the trucks’ (Hoffmann 2005)
and in the generated problems there are few examples where
this distance is large. This is because the graphs are densely
connected. In particular, the aspects of the problem where
macros might have helped are too small to make the over-
head worthwhile.

The macros that we generate can provide an important
option if the heuristic has local minima caused by interaction
with a structure. In particular, if the macros reduce the depth
of the minima and the filtering by target significance reduces
the states that need explored.

Structure building Although we have not examined the
behaviour of our macros with structure building problems
we have predicted the results for the Blocksworld domain.
In Blocksworld problems a tower that must be dismantled to
uncover a misplaced block can satisfy some part of the goal.
To uncover the block we will have to destroy these goals, re-
sulting in an arbitrary minima (Hoffmann 2005). We predict
that the macros presented here would reduce the size of the
minima. However, there can still be arbitrary local minima
under this enhancement.

In (Hoffmann 2005) it is shown that enhancing the prob-
lem model with the actions pickup-stack, unstack-stack and
unstack-putdown then the heuristic has no local minima. It
seems that an approach to generating finite macros would be
appropriate for supporting the RPG in this domain.

8 Related work
There are several related works in macro learning. In (Coles
and Smith 2007) the macros are learned to escape local min-
ima and in (Newton et al. 2007) macros are extracted from
contiguous subsequences of plans. Another key motivation
came from (Botea et al. 2011): macros are generated from
problem structures and also through analysing causal rela-
tionships in the actions. In our work suitable macros are
selected by domain analysis; whereas in these works the se-
lection of macros is biased by performance. The macros in
these works are of fixed length.

Repeating sequences have been investigated in the con-
text of generalised plans (Winner and Veloso 2007) and rule
based policies (Lindsay, Fox, and Long 2009).

9 Conclusion and future work
We have presented a novel approach to generating and rep-
resenting arbitrary length macro actions. We have defined
the property of target significance and using this we have
demonstrated that the model enhancements can be provided
efficiently. We have developed a method for generating
macros actions for traversal and stacking problems. We
have demonstrated that when a problem has certain under-
lying structures the macro actions can be used with the RPG
heuristic and improve its performance in terms of problems
covered. However, the sequences that we have proposed are
not guaranteed to remove the weakness in the RPG heuris-
tic. Our future work includes: generalising the generation
process to many traversers; investigating with sequences de-
signed to assist the heuristic; and exploiting the macro ac-
tions with other heuristics, including rule based policies.

References
Botea, A.; Enzenberger, M.; Müller, M.; and Schaeffer, J.
2011. Macro-FF: Improving AI Planning with Automati-
cally Learned Macro-Operators. CoRR abs/1109.2154.
Coles, A. I., and Smith, A. J. 2007. Marvin: A heuristic
search planner with online macro-action learning. Journal
of Artificial Intelligence Research 28:119–156.
Coles, A. I.; Fox, M.; Long, D.; and Smith, A. J. 2008.
Teaching forward-chaining planning with javaff. In Collo-
quium on AI Education, Twenty-Third AAAI Conference on
Artificial Intelligence.
Fern, A.; Khardon, R.; and Tadepalli, P. 2011. The
first learning track of the international planning competition.
Machine Learning 84(1-2):81–107.
Fox, M., and Long, D. 2001. Hybrid STAN: Identifying
and managing combinatorial sub-problems in planning. In
Proceedings of 17th International Joint Conference on AI,
445–452. Morgan Kaufmann Publishers.
Hoffman, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253–302.
Hoffmann, J. 2005. Where ‘ignoring delete lists’ works:
Local search topology in planning benchmarks. Journal of
Artificial Intelligence Research 24:685–758.
Lindsay, A.; Fox, M.; and Long, D. 2009. Lifting the lim-
itations in a rule-based policy language. In The 22nd Inter-
national Florida Artificial Research Society Conference.
Long, D., and Fox, M. 2003. The 3rd international planning
competition: Results and analysis. Journal of AI Research
20:1–59.
Newton, M. A. H.; Levine, J.; Fox, M.; and Long, D. 2007.
Learning macro-actions for arbitrary planners and domains.
In Proceedings of the Seventeenth International Conference
on Automated Planning and Scheduling (ICAPS 07).
Winner, E., and Veloso, M. 2007. LoopDISTILL: Learn-
ing looping domain-specific planners from example plans.
In International Conference on Automated Planning and
Scheduling, Workshop on Artificial Intelligence Planning
and Learning.

