Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Energetics of paraplegic cycling : a new theoretical framework and efficiency characterisation for untrained subjects

Hunt, K. J. and Saunders, B. A. and Perret, C. and Berry, H. and Allan, David. B. and Donaldson, N. and Kakebeeke, T. H. (2007) Energetics of paraplegic cycling : a new theoretical framework and efficiency characterisation for untrained subjects. European Journal of Applied Physiology and Occupational Physiology, 101 (3). pp. 277-285. ISSN 1439-6327

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Complete lower-limb paralysis resulting from spinal cord injury precludes volitional leg exercise, leading to muscle atrophy and physiological de-conditioning. Cycling can be achieved using phased stimulation of the leg muscles. With training there are positive physiological adaptations and health improvement. Prior to training, however, power output may not be sufficient to overcome losses involved in rotating the legs and little is known about the energetics of untrained paralysed muscles. Here we propose efficiency measures appropriate to subjects with severe physical impairment performing cycle ergometry. These account for useful internal work (i.e. muscular work done in moving leg mass) and are applicable even for very low work rates. Experimentally, we estimated total work efficiency of ten untrained subjects with paraplegia to be 7.6 +/- 2.1% (mean +/- SD). This is close to values previously reported for anaesthetised able-bodied individuals performing stimulated cycling exercise, but is less than 1/3 of that of able-bodied subjects cycling volitionally. Correspondingly, oxygen cost of the work (38.8 +/- 13.9 ml min(-1) W-1) was found to be similar to 3.5 times higher. This indicates the need, for increased power output from paralysed subjects, to maximise muscle strength through training, and to improve efficiency by determining better methods of stimulating the individual muscles involved in the exercise.