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Abstract: Parameter estimation is challenging for biological systems modelling since the model is normally of high dimension,
the measurement data are sparse and noisy, and the cost of experiments is high. Accurate recovery of parameters depend on
the quantity and quality of measurement data. It is therefore important to know what measurements to be taken, when and how
through optimal experimental design (OED). In this paper we present a method to determine the most informative measurement
set for parameter estimation of dynamic systems, in particular biochemical reaction systems, such that the unknown parameters
can be inferred with the best possible statistical quality using the data collected from the designed experiments. System analysis
using matrix theory is introduced to examine the number of necessary measurement variables. The priority of each measure-
ment variable is determined by optimal experimental design based on Fisher information matrix (FIM). The applicability and
advantages of the proposed method are illustrated through an example of a signal pathway model.

Key Words: Measurement Set Selection, Optimal Experimental Design, Parameter Estimation, Biological Systems

1 Introduction

Most mechanistic mathematical models developed for bi-

ological and other systems contain adjustable or unknown

parameters, the values of which can be estimated from ob-

servations. Parameter estimation is challenging for biopro-

cesses modelling [1] due to: (1) lack of quantitative mea-

surements of dynamic response data and the measurement

data is often corrupted with noise; (2) the complex nature

of biological systems with high-dimensional, nonlinear and

poorly understood dynamics. In general, performing exper-

iments to obtain rich data is expensive and time-consuming

for such systems. The problem of designing experiments

to generate efficient measurement data is thus of particular

importance. The term ’optimal experimental design (OED)’

or ’design of experiment’ refers to designing experiments in

such a way that the parameters can be estimated from the

resulting experimental data with the best possible statistical

quality. This is a subject area of growing interests particu-

larly in systems biology since huge experimental efforts are

required in model development. Various methodologies have

been developed and successfully applied to a broad range of

systems [2–4]. Interested readers can find comprehensive

reviews on experimental design and applications for general

systems in [5, 6] and biological and biochemical systems in

[7, 8].

The number of unknown parameters is often large for bio-

logical system models compared to the limited measurement

data, which raises the issue of identifiability. The checking

of identifiability is essential in employing parameter estima-

tion techniques such as least squares estimation, maximum

likelihood method and Bayesian estimation, etc [9]. Two

types of identifiability are considered: the a priori struc-

tural identifiability and the posteriori practical identifiability.

Structural (global) identifiability is concerned with the ques-
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tion of the theoretical uniqueness of solutions for a given

model and experiment. A nonlinear system is said to be

structurally (globally) identifiable if each set of parameter

values yields unique output trajectories. This property guar-

antees that, under ideal conditions of noise-free observations

and error-free model structure, the unknown parameters can

be uniquely estimated from the designed input-output ex-

periment [10]. The structural identifiability is a theoretical

property of the model and a necessary condition for a suc-

cessful parameter estimation, however, it is not sufficient to

guarantee estimation accuracy in practice [11]. Additional

problems commonly encountered in practice are sparse and

noisy data, weak effect of unknown parameters on the mea-

sured output, etc., which should be addressed in practical

identifiability analysis. The identifiability of a parameter

estimation problem can be improved through well-designed

experiments in general.

In order to produce and collect information-rich data, ex-

perimental design can be considered from two aspects. One

is the design of input perturbations (type, level and duration

of input signals), the other is to determine when and what

kind of observations should be taken. Design parameters

include level of initial conditions, which input and output

variables to be taken, what sampling schedule to follow, etc.

In this paper, OED is performed on choosing the most suit-

able set of observation variables for parameter estimation,

also called measurement set selection in earlier publications

[12, 13]. In measurement set selection, we need to consider

not only the issue of identifiability in theory, but also the

experimental restrictions in biology. For example, in a wet-

lab environment, normally only a small number of protein

concentrations can be simultaneously measured in a timely

fashion. It is therefore important to determine which observ-

ables would provide more information for parameter estima-

tion. Given a set of unknown parameters to be estimated,

we attempt to investigate: (1) the best (minimum) number

of measurement variables to be used; and (2) the set of mea-

surement variables to be chosen.
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The rest of the paper is organized as follows. In Sec-

tion 2, the preliminaries on parameter estimation and model-

based OED is briefly introduced. In Section 3, firstly the

general dynamic model is reformulated to improve the com-

putational efficiency and facilitate further analysis, then the

method to determine the minimum measurement set is dis-

cussed using the matrix theory, and the priorities of state

variables are calculated by model-based OED. Using a sim-

plified IκB α-NF-κB signal pathway model as an example,

the applicability of the design method to biological systems

modelling is illustrated in Section 4. Finally the conclusions

and discussions are given in Section 5.

2 Parameter Estimation and Experimental Design
Preliminaries

Consider a general ordinary differential equation model to

describe the dynamics of biological systems

Ẋ(t) = f (X(t), p,ω) , X(t0) = X0 (1)

Y(t) = h (X(t), p) + ξ(t) (2)

X ∈ R
n is the state vector with initial condition X0 and n the

number of the state variables. Each component of X is de-

noted as xi, which normally stands for molecule concentra-

tions in biochemical system models. p ∈ R
m is the param-

eter vector with m the number of parameters. The compo-

nents of p mostly refer to kinetic reaction rates. f(·) is a col-

umn nonlinear function for states transition, which is often

derived from the underlying biochemical mechanisms. The

vector ω is introduced to represent the experimental design

parameters. Y ∈ R
r is the measurement output vector with

r(r ≤ n) being the number of measurement variables, and

h(·) the measurement function reflecting the choice of ob-

servables. The signal ξ is assumed to be independently and

identically distributed, additive, zero-mean Gaussian noise.

Parameter estimation for system (1)-(2) can be obtained by

the least-square algorithm

p̂ = argmin
p∈Θ

N∑
l=1

(
Y(tl)− Ŷ(p̂, tl)

)T

Q−1

(
Y(tl)− Ŷ(p̂, tl)

)
(3)

where Y and Ŷ are measurement output and model predic-

tion output, respectively. Q is the measurement error covari-

ance matrix, the subscript l indicates sampling time, N is the

total number of sampling points in the dimension of time.

The Fisher information matrix (FIM) quantifies the in-

formation content of the measurement data for parame-

ter estimation. For a nonlinear dynamic system, the FIM

is a nonlinear function of the estimated parameters un-

der the assumption that the measurement noise is indepen-

dently and identically distributed with a zero-mean Gaus-

sian distribution. Denote X = [x1, x2, · · · , xn]
T , p =

[p1, p2, · · · , pm]T , the local sensitivity matrix is described

as

S = ∂X/∂p = (sij) , sij = ∂xi/∂pj (4)

The FIM is represented as a function of local sensitivity ma-

trix:

FIM(p,ω) =
N∑
l=1

ST (tl,p,ω)Q−1S(tl, p,ω). (5)

Under the assumption of additive zero-mean Gaussian

noise in measurement, an OED problem can be written as

a general optimization problem to read

ω∗ = argmax
ω∈Ω

Φ(FIM(p,ω)) . (6)

Ω is the design space for the experimental design vector ω,

Φ(·) indicates the widely used alphabetical experimental de-

sign criteria that are normally scalar functions of FIM, such

as A-optimal, maximizing trace(FIM); D-optimal, max-

imising det(FIM); E-optimal, minimizing λmax(FIM
−1),

etc. Here trace(·) and det(·) are trace and determinant of

a matrix, λmax(·) is the maximum eigenvalue of a matrix.

These criteria are related to the size and shape of the confi-

dence hyper-ellipsoid for estimated parameters, and will give

slightly different experimental design results when choosing

different criteria. The design using any of the three crite-

ria turns out to be a convex optimization problem when the

FIM is an appropriate function of the experimental design

parameters [14]. Problem (6) is in general an NP-hard prob-

lem, and the computational cost of the optimization problem

depends on the complexity of the model structure/dynamics.

3 Measurement Set Selection

3.1 Dynamic Model with Unknown Parameters
For a system containing known and unknown parame-

ters, the parameter vector p can be separated into two sets:

η ∈ R
l for known parameters, and θ ∈ R

q for unknown pa-

rameters with l+q = m. Here it is reasonable to assume that

the model is linear in parameters, as widely applied to bio-

chemical systems taking kinetic rate coefficients as parame-

ters to describe the individual reactions in a model. Consid-

ering a simple example of a generic reaction S1 + S2
k−→ P ,

the reaction rate is given by k[S1]
a[S2]

b with [·] being the

concentration of reaction species, and a, b reaction orders

with respect to S1 and S2, respectively. k is the rate con-

stant that is a linear term in describing the reaction rate. Un-

der this assumption and together with the separation of the

known and unknown terms in p, model (1) can be further

written as follows (for simplicity, ω is omitted):

Ẋ(t) = g (X(t))η + ϕ (X(t))θ (7)

where g(·) ∈ R
n×l and ϕ(·) ∈ R

n×q are nonlinear func-

tions associated with known and unknown parameters, re-

spectively. For a biochemical system, the nonlinear function

g(·) often contains both linear and nonlinear terms with re-

spect to species concentrations (state variables). A typical

nonlinear form involving two reaction species is a bilinear

function. When a system has a large number of reactions,

leading to a high dimension in model parameters, the sepa-

ration of the linear (states) terms from the nonlinear (states)

terms will decompose the model into subgroups with a re-

duced size in each group. This will largely improve the

efficiency of numerical calculations that often involve inte-

gration operation of matrix functions. Following this idea,

model (7) is further reformulated to be:

Ẋ(t) = AX(t) + g̃ (X(t))η1 + ϕ (X(t))θ (8)

where A ∈ R
n×n is a parameter matrix, g̃(·) groups the

nonlinear (states) functions in g(·), η1 ∈ R
l1(l1 ≤ l) is
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the known parameter vector associated with g̃(·). Note that

with this new formulation that isolate the unknown param-

eters from the whole parameter set, the term p of the FIM

function in (6) should be replaced by θ in OED.

3.2 Minimum State Number to be Measured
A general assumption is made that measurement output Y

are linear function of the states. This is how measurement

data is processed with most current measurement techniques

applied to biological or biochemical systems. The measure-

ment output in (2) can then be written as (ignoring the noise

term for simplicity)

Y(t) = CX(t) (9)

where C ∈ R
r×n is the measurement matrix. From model

(8) and (9), the output reads

Y(t) = CeAtX0 + C
(∫ t

0

eA(t−τ)g̃(X(τ))dτ

)
η1

+C
(∫ t

0

eA(t−τ)ϕ(X(τ))dτ

)
θ (10)

Equation (10) shows the linear dependency of measure-

ment observables on unknown parameters θ. According to

the linear matrix theory, the rank of the linear term multi-

plied to θ, i.e. rank
(

C
∫ t

0
eA(t−τ)ϕ(X(τ))dτ

)
should be

maximised in order to realise the minimum number of mea-

surement variables for the estimation of θ. The design prob-

lem can then be formulated as an optimisation problem of

choosing a matrix C, consisting of elements 1 or 0, so as to

maximise the following objective function:

J(C) = max
C

rank

(
C
∫ t

0

eA(t−τ)ϕ(X(τ))dτ

)
(11)

The solution to (11) is discussed in the following. Denote

B =

∫ t

0

eA(t−τ)ϕ(X(τ))dτ (12)

where B ∈ R
n×q represents the convolution of eA(t−τ) and

ϕ(X(τ)). For a given model, the matrix term A and func-

tion ϕ(·) are known, therefore B can be taken as a known

term at time t. Assume that rank(B) = m, from matrix the-

ory it is known that rank(CB) ≤ min {rank(C), rank(B)},

which means J(C) won’t be larger than m in any case. The

conclusion is therefore made that max J(C) = m when

rank(C) = m.

It should be noted that the minimum number of observ-

ables determined this way is a theoretical result that guar-

antees the structural identifiability and the best estimation

accuracy. Parameter estimation in practice is not restricted

to the minimum number of measurement variables but the

estimation result is only an approximate solution.

3.3 Priority of Measurement Variables
As denoted in the general nonlinear model of the dynamic

systems (1)-(1), there are n state variables and each of them

can be taken as the observables via the measurement matrix

C. To prioritise each variable xi in terms of their contri-

butions to the specified parameter estimation problem, the

weighting factor ωi is introduced to xi to form the design

problem.

ζ =

(
x1, x2, · · · , xn

ω1, ω2, · · · , ωn

)
,

n∑
i=1

ωi = 1, ωi ≥ 0 (13)

Taking the design parameter vector as ω =
[ω1, ω2, · · · , ωn]

T , computationally the FIM can be

written as

FIM(θ,ω) =
N∑
l

n∑
i=1

ωiST
i (tl,θ)Si(tl,θ) (14)

where Si is the ith row of the sensitivity matrix S.

The idea of the E-optimal design is to minimise the largest

confidence interval of the estimated parameters. Taking this

criterion, the OED problem on measurement set selection is

formulated as follows:

ω∗ = argmin
ω∈Ω

λmax

[
(FIM(θ,ω))

−1
]

(15)

s.t.

n∑
i=1

ωi = 1, ωi ≥ 0

This problem can be recast into a semidefinite program

(SDP) [13, 15]:

ω∗ = argmax
ω

ν (16)

s.t.
n∑

i=1

ωiST
i (tl,θ)Si(tl,θ) ≥ νIq

n∑
i=1

ωi = 1, ωi ≥ 0

Iq is the q × q identity matrix. The optimisation can then be

solved efficiently by many SDP solvers such as SeDuMi, a

high quality package with MATLAB interface.

4 Simulation Study on IκB-NF-κB Signalling
Pathway Model

4.1 Model Simulation and E-optimal Design Result
To examine the applicability of this method in parame-

ter estimation of biological models, a simplified IκB-NF-

κB signal transduction pathway network model is chosen for

simulation study. The protein NF-κB is a fundamental com-

ponent of the IκB-NF-κB signaling pathway that regulates

numerous genes [16], acting in response to environmental

and biological stress, and bacterial and viral infection. Its

specificity and its role in the temporal control of gene ex-

pressions are of crucial physiological interest. The mech-

anism of this pathway has been described by Hoffmann et

al. [17], Nelson et al.[18], Lipniacki et al.[19] and Ashall et

al.[20], to name a few.

The simplified model is written in a set of ordinary dif-

ferential equations with 10 state variables and 24 parameters

(see appendix for more details). This model is linear in pa-

rameters, but the dynamic transition function contains linear

terms, bilinear terms and a quadratic term. From our previ-

ous work of global sensitivity analysis of this model [21], a

set of five parameters are identified to be the most sensitive

ones and they are thus used as the unknown parameters in the
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simulation study. The five unknown parameters are written

in a vector format as θ =
[
θ5 θ12 θ13 θ16 θ18

]T
.

To improve the calculation efficiency, we first rewrote the

model into the format of (8) and have obtained q = 5, l =

19, l1 = 6, η1 =
[
θ1 θ3 θ9 θ11 θ14 θ20

]T
. The

objective of OED is to select the most informative state vari-

ables from the 10 states to provide the best estimation accu-

racy for the 5 unknown parameters.

In the simulation, the nominal values of the five parame-

ters are θ∗ = [1.221 0.99 0.0168 0.2448 0.018], the initial

conditions of the states were taken from the equilibrium with

x6 = 0.1μM as an activation input (IKK). A Gaussian noise

was introduced into the simulation data with zero-mean and

a standard deviation of 1 % of the ’clean’ signal at each time

point. For large-scale biological models, due to limitations

in experimental measurement frequency, the measured data

are often sampled at relatively large time spans. In this nu-

merical study, the sampling points are taken between 0 and

360 minutes with 5 minutes being the sampling interval. It

is also assumed that each protein concentration (state vari-

able) can be measured independently in the experiment. The

E-optimal design was calculated over an uncertainty region

around the nominal values [13], and the state variables in

descending order of priority are presented as follows:

X∗ = [x5 x8 x7 x1 x10 x4 x3 x9 x2 x6] .

This OED result indicates that, for the 5 unknown param-

eters to be estimated, among the 10 state variables, x5 is

the most informative measurement variable, x8 is the sec-

ond informative one and so on and so forth. When select-

ing the measurement set for parameter estimation, we should

consider those states with higher priorities so as to obtain a

higher estimation accuracy.

4.2 Discussions on Measurement Set Selection
From the IκB-NF-κB signalling pathway differential

equation model, we wrote the parameter matrix A and func-

tion ϕ(·) following (8). Accordingly, the rank of the ma-

trix B in (12) was computed by the convolution integration

and this calculation brings rank(B) = 5. Following the dis-

cussions in Section 3.2, when rank(C) = rank(B) = 5,

max J(C) = 5, which means the minimum number of the

measurement states is 5 to guarantee the structure identifia-

bility in estimating θ. This result is intuitive since there are

5 (independent) unknown parameters to be estimated and all

the state variables are measured independently. Taking into

account the E-optimal experiment design result in X∗, we

can select the top five states [x5 x8 x7 x1 x10] to form the

most suitable measurement set.

To investigate how the measurement set selection may

affect the parameter estimation, the following four experi-

ments taking different state variables are implemented for

comparison.

(a) 3 top observables in X∗, [x5 x8 x7];
(b) 5 top observables in X∗, [x5 x8 x7 x1 x10];
(c) 7 top observables in X∗, [x5 x8 x7 x1 x10 x4 x3];
(d) 5 bottom observables in X∗, [x4 x3 x9 x2 x6].
In the first 3 experiments, the number of observables is

different in each case but the measurement states are always

selected from the top following the ranking given in X∗. In

the last experiment, the number of observables is taken as the

minimum number but a different set of measurement vari-

ables were selected. The least-square algorithm was used

for parameter estimation, in which the parameter searching

space in all simulations were set to be [0.01θ∗, 10θ∗], and

the initial searching point was randomly chosen within the

parameter space. Multi-shooting strategy was employed to

avoid the local minimum problem. The estimated parameter

values are given in Table 1. All estimations bring reasonable

recovery of the parameter values, among them the results

using 5 and 7 optimal measurement variables have less es-

timation errors than those using 3 optimal observables or 5

non-optimal observables.

Table 1: Estimated Parameters with Different Observables

θ̂5 θ̂12 θ̂13 θ̂16 θ̂18
(a) 1.181 0.955 0.0162 0.2361 0.0174

(b) 1.209 0.978 0.0166 0.2419 0.0178

(c) 1.209 0.978 0.0166 0.2428 0.0178

(d) 1.158 0.936 0.0159 0.2316 0.0170

Since the result of parameter estimation highly relies on

the efficiency of the optimisation algorithm, it is perhaps not

the best way to evaluate the effects of measurement set se-

lection. Confidence interval, instead, is a more reliable as-

sessment regarding each design and is worked out from the

FIM following Cramer-Rao inequality. In general, a smaller

confidence interval indicates an estimation with less errors,

and vice versa. For the first 3 experiments, the corresponding

95% confidence interval of several parameter pairs are illus-

trated in Fig. 1 to Fig. 4, in which ′+′ stands for the nominal

value of the parameters. Two parameters are chosen in each

figure just to present the results in a 2D plane.

1.16 1.18 1.2 1.22 1.24 1.26 1.28

0.9

0.95

1

1.05

1.1

θ
5

θ 12

3 observables
5 observables
7 observables

Fig. 1: Confidence interval of parameters θ5 and θ12

It can be seen from Fig. 1 to Fig. 4 that, for the case of

three optimal observables, the 95% confidence interval is

much larger than that of the five or seven optimal observ-

ables. Whereas, for the experiments with five or more ob-

servables, their 95% confidence intervals are very close to

each other, in fact, the ellipsoids are visually indistinguish-

able in Fig. 1 to Fig. 4. This result suggests that when the

number of measurement variables used is less than the min-
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1.16 1.18 1.2 1.22 1.24 1.26 1.28
0.016

0.0162

0.0164

0.0166

0.0168

0.017

0.0172

0.0174

0.0176

θ
5

θ 13

3 observables
5 observables
7 observables

Fig. 2: Confidence interval of parameters θ5 and θ13

1.16 1.18 1.2 1.22 1.24 1.26 1.28
0.22

0.23

0.24

0.25

0.26

0.27

0.28

θ
5

θ 16

3 observables
5 observables
7 observables

Fig. 3: Confidence interval of parameters θ5 and θ16

1.16 1.18 1.2 1.22 1.24 1.26 1.28
0.0165

0.017

0.0175

0.018

0.0185

0.019

0.0195

θ
5

θ 18

3 observables
5 observables
7 observables

Fig. 4: Confidence interval of parameters θ5 and θ18

imum number of states to be measured, the estimation ac-

curacy could be poor even when the most informative state

variables are selected. Certain information about the un-

known parameters set θ are missing when using less than

necessary measurements. On the other hand, the estimation

results won’t improve much when more than necessary mea-

surements are taken into calculation. This is also validated

by the parameter estimation results in Table 1.

When selecting measurement set, it is also important to

take the more informative observables rather than those con-

taining less information. By comparing the confidence inter-

val ellipsoids in Fig. 5, it can be clearly seen that the confi-

dence interval using the 5 optimal observables (top 5 states

in X∗) is much smaller than the one using 5 non-optimal ob-

servables (bottom 5 states in X∗). The former has a smaller

parameter estimation error owing to the fact that the selected

measurement set contains more information about the un-

known parameters.

1 1.1 1.2 1.3 1.4 1.5

0.6

0.8

1

1.2

1.4

1.6

θ
5

θ 12

    optimal observables
non−optimal observables

Fig. 5: Comparison of confidence interval of parameters θ5
and θ12 w.r.t. the optimal and non-optimal observables

5 Conclusions and Discussions

Optimally designed experiments allow to maximise the in-

formation contained in measurement data and also to min-

imise cost and efforts of experiments. In this work, the mea-

surement set selection problem is discussed where the num-

ber of measurement variables and the priority of observables

can be determined through matrix theory and model-based

OED. In the case study example, it is assumed that each

state variable can be measured independently. Therefore,

the result on the minimum number of state variables to be

measured is quite intuitive. In some practical problems, only

the combination of states can be measured rather than each

individual state. In such cases, the proposed method still ap-

plies since the priority of any combined state measurements

can be extracted from the ranking or weights of each indi-

vidual state variable. Also, the minimum number of states to

be measured can still be calculated by the proposed method

using matrix theory. We are interested in exploring such ex-

amples from biological or biochemical systems, and further

validate and develop the measurement set selection strategy.

The OED on measurement set selection will be partic-

ularly useful when the number of observables available is

large or when new observables such as new antibodies are to

be generated. To some extend, experimental design bridges

the gap between theoretical and experimental research com-

munities. On the one hand, theoreticians learn to evalu-
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ate and appreciate feasibility and efforts required in exper-

iments, on the other hand, experimental scientists develop a

better understanding on which kind of information is most

helpful to model development.
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Appendix

The model presented here is a simplified version of the

NF-κB signal pathway model [17] with IκBβ and IκBε
knock out. The reaction species and state variable definition

is given in Table 2, in which the subscript ’-t’ represents the

mRNA corresponding to the former protein and ’n’ indicates

the proteins inside nucleus. The values of model parameters

are listed in Table 3 with units of μM for concentration and

minute for time. The constant term Source is taken to be

1μM in ODEs.

Table 2: IκB-NF-κB Model States
States Species States Species

x1 IκBα x6 IKK

x2 NF-κB x7 NF-κBn

x3 IκBα-NF-κB x8 IκBαn

x4 IKKIκBα x9 IκBαn-NF-κBn

x5 IKKIκBα-NF-κB x10 IκBα−t

Table 3: IκB-NF-κB Model Parameter Values
θ1 30 θ9 30 θ17 0.00678

θ2 6e-5 θ10 6e-5 θ18 0.018

θ3 30 θ11 9.24e-5 θ19 0.012

θ4 6e-5 θ12 0.99 θ20 11.1

θ5 1.221 θ13 0.0168 θ21 0.075

θ6 6e-5 θ14 1.35 θ22 0.828

θ7 5.4 θ15 0.075 θ23 0.0072

θ8 0.0048 θ16 0.2448 θ24 0.2442

A set of ordinary differential equations are used to de-

scribe the system dynamics.

ẋ1 = (θ17 + θ18)x1 + θ2x3 + θ15x4 + θ19x8 + θ16x10

−θ1x1x2 − θ14x1x6

ẋ2 = −θ7x2 + (θ2 + θ6)x3 + (θ4 + θ5)x5 + θ8x7

−θ1x1x2 − θ3x2x4

ẋ3 = −(θ2 + θ6)x3 + θ21x5 + θ22x9 + θ1x1x2

−θ20x3x6

ẋ4 = −(θ15 + θ24)x4 + θ4x5 + θ14x1x6 − θ3x2x4

ẋ5 = −(θ4 + θ5 + θ21)x5 + θ3x2x4 + θ20x3x6

ẋ6 = (θ15 + θ24)x4 + (θ5 + θ21)x5 − θ23x6 − θ14x1x6

−θ20x3x6

ẋ7 = θ7x2 − θ8x7 + θ10x9 − θ9x7x8

ẋ8 = θ18x1 − θ19x8 + θ10x9 − θ9x7x8

ẋ9 = −(θ10 + θ22)x9 + θ9x7x8

ẋ10 = θ11Source− θ13x10 + θ12x
2
7
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