Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Determine measurement set for parameter estimation in biological systems modeling

Yue, Hong and Jia, J.F. (2012) Determine measurement set for parameter estimation in biological systems modeling. In: 31st Chinese Control Conference (CCC2012), 2012-07-25 - 2012-07-27.

[img] PDF
CCC2012_paper_CD_version.pdf - Preprint

Download (184kB)

Abstract

Parameter estimation is challenging for biological systems modelling since the model is normally of high dimension, the measurement data are sparse and noisy, and the cost of experiments is high. Accurate recovery of parameters depend on the quantity and quality of measurement data. It is therefore important to know what measurements to be taken, when and how through optimal experimental design (OED). In this paper we present a method to determine the most informative measurement set for parameter estimation of dynamic systems, in particular biochemical reaction systems, such that the unknown parameters can be inferred with the best possible statistical quality using the data collected from the designed experiments. System analysis using matrix theory is introduced to examine the number of necessary measurement variables. The priority of each measurement variable is determined by optimal experimental design based on Fisher information matrix (FIM). The applicability and advantages of the proposed method are illustrated through an example of a signal pathway model.