Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Measurement set selection of parameter estimation in biological system modelling - a case study of signal transduction pathways

Jia, J.F. and Yue, Hong (2012) Measurement set selection of parameter estimation in biological system modelling - a case study of signal transduction pathways. Journal- China University of Science and Technology, 42 (10). 828-835,845. ISSN 0253-2778

[img]
Preview
PDF
JUSTC2012.pdf - Preprint

Download (587kB) | Preview

Abstract

Parameter estimation is a challenging problem for biological systems modelling since the model is normally of high dimension, the measurement data are sparse and noisy and the cost of experiments high. Accurate recovery of parameters depends on the quality and quantity of measurement data. It is therefore important to know which measurements to be taken when and how through optimal experimental design (OED). In this paper a method was proposed to determine the most informative measurement set for parameter estimation of dynamic systems, in particular biochemical reaction systems, such that the unknown parameters can be inferred with the best possible statistical quality using the data collected from the designed experiments. System analysis using matrix theory was used to examine the number of necessary measurement variables. The priority of each measurement variable was determined by optimal experimental design based on Fisher information matrix (FIM). The applicability and advantages of the proposed method were shown through an example of signal pathway model.