Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Distribution power flow management utilising an online optimal power flow technique

Dolan, Michael and Davidson, Euan and Kockar, Ivana and Ault, Graham and Mcarthur, Stephen (2012) Distribution power flow management utilising an online optimal power flow technique. In: Proceedings of the 2012 IEEE Power and Energy Society General Meeting. IEEE. ISBN 978-1-4673-2727-5

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

This paper describes the current connection regime for distributed generation (DG) in the UK and presents a novel application of the Optimal Power Flow (OPF) technique for automatic power flow management (PFM) to manage thermal constraints in distribution networks. OPF formulations have been used, in an offline mode, as a power system planning tool for several years. The novel implementation of OPF for ‘corrective’ PFM in an online operational mode, for MV distribution networks, is presented and tested in this paper. The authors demonstrate, through simulations conducted on a commercially available substation computer, that such an application of OPF can represent first on, last off generator connection agreements that reflect the current principles of access in the UK. Two case study networks, a 33kV and an 11kV, provide the basis for assessment of the OPF-based PFM algorithm in terms of computation time to arrive at a solution in the event of a network thermal excursion and the level of DG curtailment necessary to meet network thermal limits. Assessments are made and fully discussed of the suitability for an OPF-based approach for distribution network management within an online network control scheme including discussion of the important consideration of control robustness.