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Abstract 

 Although calculations of free energy using molecular dynamics simulations have 

gained significant importance in the chemical and biochemical fields, they still remain 

quite computationally intensive. Furthermore, when using thermodynamic integration, 

numerical evaluation of the integral of the Hamiltonian with respect to the coupling 

parameter may introduce unwanted errors in the free energy. In this paper, we compare 

the performance of two numerical integration techniques – the trapezoidal and 

Simpson’s rules – and propose a new method, based on the analytic integration of 

physically-based fitting functions that are able to accurately describe the behavior of the 

data. We develop and test our methodology by performing detailed studies on two 

prototype systems, hydrated methane and hydrated methanol, and treat Lennard-Jones 

and electrostatic contributions separately. We conclude that the widely used trapezoidal 

rule may introduce systematic errors in the calculation, but these errors are reduced if 

Simpson’s rule is employed, at least for the electrostatic component. Furthermore, by 

fitting thermodynamic integration data we are able to obtain precise free energy 

estimates using significantly fewer data points (5 intermediate states for the electrostatic 

component and 11 for the Lennard-Jones term), thus significantly decreasing the 

associated computational cost. Our method and improved protocol were successfully 

validated by computing the free energy of more complex systems – hydration of 2-

methylbutanol and of 4-nitrophenol – thus paving the way for widespread use in 

solvation free energy calculations of drug molecules. 

 

Keywords: free energy, thermodynamic integration, molecular simulation, solvation, 

non-linear regression; 
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1. Introduction 

 Calculation of free energies is extremely important for a wide spectrum of 

technological areas, perhaps most notably in the pharmaceutical industry, where 

solvation free energy estimates are essential to predict, for example, drug solubility and 

protein-ligand binding energies 
1, 2

. Thus, computational methods that are able to predict 

accurate solvation free energy values can bring tremendous advances in drug design 

methodologies. With recent improvements in computer power and algorithms, 

molecular simulation-based free energy calculations are being performed in a more 

routine way (as an example, a recent paper by Mobley et al. calculated the hydration 

free energy of 504 compounds using molecular simulation
3
). Nevertheless, we have not 

yet reached a stage where these methods are predictive enough for practical use
4
. A 

major stumbling block is the fact that the parameterization of most molecular force 

fields does not take free energy data into account (a notable exception being the recent 

parameterizations of the GROMOS force field
5
), which is understandable given that 

such calculations are still much more computationally demanding than calculations of 

bulk fluid properties and phase equilibria. There is thus a pressing need to make free 

energy calculation methods as fast as possible. Furthermore, such calculations must be 

very precise – if the error intrinsic to the calculation method is small (high precision), 

any differences between simulation and experiment can be confidently attributed to 

inaccuracies in the molecular model, which can then be appropriately refined. The 

problem is that precision and speed do not normally come hand-in-hand, and in practice 

one must find an appropriate balance between the two. In this work, we explore 

different integration methods in an attempt to improve both the precision and the speed 

of free energy calculations using Thermodynamic Integration (TI) of molecular 

simulation data. 
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 TI, originally proposed by Kirkwood
6
, is the most widely used, and perhaps 

most robust, method for computing solvation free energies of complex solutes (for a 

review of other methods and a more detailed description of TI, the reader is referred, for 

example, to the recent book by Chipot and Pohorille
7
). The TI method considers a 

transition between two generic well-defined states, an initial reference state (state 0) and 

a final target state (state 1), described by the Hamiltonians 0H  and 1H , respectively. A 

coupling parameter, λ, is added to the Hamiltonian, ( ), ;λH p q , where p is the linear 

momentum and q the atomic position, and used to describe the transition between the 

end-points: ( ) ( ), ;0 , ;1→H Hp q p q . Considering several discrete and independent λ 

values between 0 and 1, equilibrium averages can be used to evaluate derivatives of the 

free energy with respect to λ. One then integrates the derivatives of the free energy 

along a continuous path connecting the initial and final states in order to obtain the 

energy difference between them: 

 

 
( )1

0

, ,
G d

λ

λ
λ

λ
∂

∆ =
∂∫

H p q
       (1) 

 

where the angular brackets indicate an ensemble average at a particular value of λ. 

Equation (1) is exact, but suffers from two possible sources of error: i) the statistical 

error in the ensemble average of the Hamiltonian derivative at each value of λ, and ii) 

the error associated to the integration of the curve. The first error can be reduced, in 

principle, by increasing the length of each individual simulation. The second type of 

error is normally addressed by increasing the number of intermediate points. Indeed, it 

has been concluded that the precision of the TI methodology depends mostly on the 
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smoothness of the λ∂ ∂H  vs. λ plot 
8
. As a rule of thumb, it was suggested that the free 

energy difference between two consecutive points (λ and λ + ∆λ) should be less than 2 

kcal/mol 
9
. If we deal with a system containing high energy barriers, the number of 

intermediate steps may become considerably large and the associated computational 

cost too high. Here, we analyze in detail the impact of the choice of integration method 

and the number of intermediate points on the precision of the free energy estimate. 

 The trapezoidal rule is by far the most widely used method to numerically 

evaluate the integral in equation (1) when estimating G∆  via TI. A notable exception is 

the use of Gauss-Legendre integration in the work of Smith et al.
10

 The trapezoidal rule 

performs a linear interpolation between successive points, and can thus suffer from 

systematic errors if the underlying function is very far from linearity (which is indeed 

the case for most practical calculations). An alternative to reduce such deviations is to 

use a more elaborate integration method, such as the Simpson rule. However, to our 

knowledge, this has not been previously explored in free energy calculations. Another 

option would be to fit the entire data set to an appropriate functional form, and then 

perform the integration of this function analytically. This idea has been applied before 

by Swope and Andersen
11

 where average solute – water interactions in the hydration of 

inert gases were fitted as a function of the coupling parameter and by Hummer and co-

workers in the context of charging free energies 
12

. Recently, while this manuscript was 

being prepared, Shyu and Ytreberg 
13

 have demonstrated that the use of polynomial 

functions to fit simulation data can significantly increase the precision of the free energy 

estimates over the trapezoidal rule, without requiring additional simulations. However, 

they have examined only very simple prototype systems, with an analytical solution to 

the free energy and smooth monotonous curves. As we will show below, simple 
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polynomial functions are not the best choice to describe the curves that arise in 

hydration free energy calculations, even for small solutes. 

 In the present work, we compare the performance of two numerical integration 

techniques – the trapezoidal rule and Simpson’s rule – in the calculation of free energies 

from TI. Furthermore, we develop a physically-based fitting function that is able to 

accurately describe the variation of the Hamiltonian derivative with respect to the 

coupling parameter. By fitting this function to the simulation data, we are able to obtain 

precise free energies using significantly fewer intermediate points, thus decreasing the 

associated computational cost. We carry out our detailed study for two prototype 

systems, methane and methanol in water, which represent realistic solutes (both polar 

and apolar) and solvent, but are simple enough to allow for long simulations to be 

performed at a very large number of intermediate values of λ, an essential requisite to 

assess the validity of our procedure. We then apply our methodology to the solvation of 

two larger and more complex molecules, namely 2-methylbutanol and 4-nitrophenol, in 

order to demonstrate its applicability in realistic free energy calculations. In the 

following section, we present a detailed description of the simulation methods, while 

the integration methods and the development of the fitting function are explained in 

Section 3. Section 4 presents the results of our study followed by the main conclusions 

in Section 5. 

 

2. Computational Details 

 Molecular dynamics (MD) simulations were performed using the GROMACS 

simulation suite
14

. Hydrated systems consisted of one solute molecule (methane, 

methanol, methylbutanol or 4-nitrophenol) represented by the OPLS-AA
15

 force field 

and 500 water molecules represented by the SPC/E
16

 model (parameters for the models 
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are provided in Tables S1-S4 of the Supporting Information). Covalent bonds involving 

hydrogen atoms were constrained with the LINCS
17

 algorithm while the water geometry 

was fixed with the SETTLE
18

 algorithm. For efficiency reasons 
19

 we have used the 

reaction-field method, originally proposed by Lee et al.
20

, with a cut-off distance of 1 

nm and a dielectric permittivity of 80, to account for long-range electrostatic 

interactions. The remaining cut-off radii used were 1 nm for the short-range neighbor 

list and a 0.8-0.9 nm switched cut-off for the LJ interactions. We have applied long 

range corrections for energy and pressure as suggested in the work of Shirts el al.
8
. 

Simulations were performed using periodic boundary conditions in all directions. 

Newton’s equations of motion for all species were integrated using the leap-frog 

dynamic algorithm
21

 with a time step of 2 fs. Langevin stochastic dynamics
22

 was used 

to control the temperature, with a frictional constant of 1 ps
-1

, while for constant 

pressure runs the Berendsen barostat
23

, with a time constant of 0.5 ps and an isothermal 

compressibility of 4.5× 10
-5

 bar
-1

, was used to enforce pressure coupling. 

 The TI method makes use of a thermodynamic cycle to compute the free energy 

required to transfer a given solute from the gas phase to the solvent. The three stages of 

the cycle are: i) transforming the solute into a dummy molecule (i.e, turning off all non-

bonded interactions) in vacuum; ii) solvating the dummy molecule; iii) transforming the 

dummy molecule into the solute in water. Because dummy molecules have no 

interactions with their environment, the free energy associated with stage ii) is zero by 

definition. Stage i) is normally required to compensate for intramolecular interactions 

that are coupled to the non-bonded parameters. However, methane is small enough that 

this contribution is zero (there are no atoms separated by more than two bonds). In the 

other three solutes, vacuum calculations need to be performed because 1-4 interactions 

are present, but for the LJ component of methanol these turn out to be zero as well (the 
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LJ parameters for the hydroxyl hydrogen atom are zero in the OPLS-AA model 
15

). For 

stages i) and iii), the total solvation free energy can be calculated by transforming the 

fully interacting solute (λ = 1) into a dummy solute (λ = 0) in vacuum and in water, 

respectively. In the case of methanol, 2-methylbutanol and 4-nitrophenol (polar solutes), 

this operation was performed in two steps – first the charges were gradually turned off 

and then the Lennard-Jones (LJ) parameters were decoupled – thus avoiding charge 

fusion effects 
8
. A linear dependence of the electrostatic interactions with the coupling 

parameter was imposed. For all four solutes, the soft-core function of Beuler et al. 
24

 

was used for the dependence of the LJ term with λ: 

 

 ( )( )1/ 6
6 61

p

SCV V rλ ασ λ = − +  
      (2) 

 

In this equation, V(r) is the normal “hard-core” pair potential, α is the soft-core 

parameter, and σ is the LJ site diameter. This soft-core dependence eliminates 

singularities in the calculation as the LJ interactions are turned off and is the only 

scaling protocol that yields completely stable dynamics near the end points, as reported 

in a comparison of different non-bonded scaling approaches for free energy 

calculations
25

. We have used a value of p = 1 for the power of the λ dependence, since 

this produces a much smoother λ∂ ∂H  for LJ interactions 
8
. The value of α was 0.5 

which is the optimized value for p = 1, as reported by Mobley et al.
26

. 

 Initial configurations for each point were generated by immersing the solute 

molecules in a previously equilibrated water box at 298 K and 1 bar, after which short 

equilibration runs were performed. For each simulation, we then run an energy 

minimization (using the Limited-memory Broyden-Fletcher-Goldfarb-Shanno 
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algorithm
27

 during 5000 steps followed by a steepest descendent minimization of 1000 

steps) followed by a constant volume equilibration (100 ps), a constant pressure 

equilibration (500 ps), long enough to obtain complete equilibration of the box volume, 

and finally a 5 ns NpT production stage. This procedure was repeated for each λ value, 

allowing for a separate minimization. Sampling errors for each individual simulation 

were estimated using the block averaging procedure of Flyvbjerg and Petersen 
28

. For 

the purpose of our study, it is important to have a very precise estimate of ∆G to serve 

as a reference value. To achieve this, we have used a total of 129 equidistant 

intermediate points for each of the small solutes (for both LJ and electrostatic 

components in the case of methanol). Equidistant points are preferable when there is no 

a priori knowledge of the final shape of the λ∂ ∂H  plot. Reduced data sets were built 

by manipulating the original set of 129 points, as described in Section 4. For 2-

methylbutanol and 4-nitrophenol, we used 31 points for the LJ component and 17 points 

for the electrostatic component, as explained in detail below. 

 

3. Integration Methods 

 The simplest method to integrate a curve composed of discrete points is the 

trapezoidal rule. This is a first order method, which simply interpolates linearly between 

consecutive values of x, resulting in the following generic formula: 

 

 ( ) ( ) ( ) ( )
1

1
1

1

1 2

N
Nx

i i

i i
x

i

f x f x
f x dx x x

−
+

+
=

+
= −∑∫     (3) 

 

where N is the total number of points in the required interval, and f(x) is the function 

one wishes to integrate. The trapezoidal rule can be applied with any number of points 
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separated by any distance. In the special case of evenly distributed points in the 

integration interval, equation (3) simplifies to: 

 

 ( ) ( ) ( ) ( )
1

1
1

22 2

N
Nx

N

i
x

i

f x f x
f x dx h f x

−

=

 
= + + 

 
∑∫     (4) 

 

where h is the interval between two consecutive points. Due to its simplicity and 

versatility, the trapezoidal rule is widely employed, and has been the method of choice 

in the large majority of free energy calculations by thermodynamic integration. 

 A more accurate integration method is Simpson’s rule. It is a second order 

method (i.e., interpolates between 3 successive points using a quadratic polynomial), 

but turns out to be exact up to degree 3 due to a cancellation of coefficients 
29

. The 

generic formula is: 

 

 ( ) ( ) ( ) ( ) ( )
1

1

2
2 1 2 2 1

2 1 2 1

1

4

3

N

N

x
i i i

i i
x

i

f x f x f x
f x dx x x

−

− +
+ −

=

+ +
= −∑∫   (5) 

 

Notice that Simpson’s rule requires that N be odd (i.e. an even number of intervals) and 

that any three successive points be separated by equal intervals. In practice, however, it 

is almost always applied to situations in which the points are all evenly distributed in 

the integration interval. In this case, equation (5) reduces to: 

 

 ( ) ( ) ( ) ( ) ( ) ( )
1

1

1 2

3

2
4 3 1

3

N
N

x i

i N
x

i

h
f x dx f x f x f x f x

−

=

  = + + + − +   
∑∫  (6) 
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 An alternative to the above numerical integration schemes is to use a fitting 

function. In this case, a specific functional form, with a certain number of fitting 

parameters (as few as possible), is fitted through all the data points in the integration 

interval, and the desired integral is then evaluated directly from the fitting function. The 

simplest fitting functions that can be applied are polynomials of the form: 

 

 ( )∫ ∑=
=

n P
x

x

n

i

i

i xadxxf
1

1

        (7) 

 

where nP is the degree of the fitting polynomial and ai are the unknown coefficients 

(i.e., the fitting parameters). Notice that the term for i=0 is taken to be zero, so that the 

function passes through the origin. Normally, increasing nP leads to a better fit of the 

data set that one wishes to integrate. In practice, however, a point is usually reached 

when the error of the polynomial expansion is of the same order as the uncertainty in 

the data, and a further increase of nP leads to no improvement of the fit. Notice also that, 

in order for the fitting to be meaningful, one must always have N ≥ nP. A further 

problem with polynomial fits is that they tend to produce unphysical oscillations for 

data sets that show a complicated dependence on x 
29

. 

 As we will see below, polynomial functions provide an excellent description 

of the electrostatic contribution to the free energy, but are inappropriate for fitting the 

Lennard-Jones component, due to the more complicated dependence on λ. In the latter 

case, we have searched for a more physically-based fitting function. The reader is 

warned that the following is not meant to be a rigorous model for describing the LJ 

contribution to the hydration free energy, but is simply a method of obtaining a fitting 

function that is based on the physics of that contribution. Indeed, it involves some very 
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crude assumptions regarding the nature of the interactions in the system, but is 

nevertheless able to yield a good fit of the LJ data, as we will see below. 

 The total LJ contribution to the free energy may be considered to arise from a 

competition between two different components, one due to (unfavorable) cavity 

formation in the solvent and the other due to (favorable) van der Waals interactions 

between solute and solvent 
30

. The first component is mainly entropic in nature, and is 

predominant at small values of λ, while the second component is mainly enthalpic and 

dominates for large values of λ. The cavity formation free energy may be expressed as 

the sum of a volume term (the work acting against an external pressure) and a surface 

term (work acting against the surface tension), as follows 
30, 31

: 

 

 3 3 2 24 4
4 1

3
CavG pr r

r

π δ
λ πγ λ

λ
 ∆ + − 
 

�      (8) 

 

where p is the pressure, r is the solute radius, γ is the surface tension and δ is a curvature 

correction to the surface tension. A similar expression can be derived from scaled-

particle theory 
30, 32

: 

 

 3 2

3 2 1 0CavG K K K Kλ λ λ∆ + + +�       (9) 

 

Taking any of these forms, it is easy to see that the cavity contribution to the 

Hamiltonian derivative can be approximated by a quadratic expression: 

 

 2

0 1

Cav

A A Kλ λ
λ

∂  = + + ∂ 

H
      (10) 
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where we take A0, A1 and K as adjustable (free) parameters. 

 As for the attractive term, it is reasonable to assume that, once the cavity is 

formed, there will be no significant solvent restructuring caused by turning on the 

attractive interactions 
30, 33

. This mean-field approximation implies that the entropic 

contribution is negligible, and thus the free energy is given simply by the solute-solvent 

van der Waals interaction energy. Furthermore, we introduce the simplification that this 

attractive energy is the sum of an explicit and an implicit term, as follows: 

 

 
Expl ImplLJ

Attr

E EE

λ λ λ λ

∂ ∂∂∂  = + ∂ ∂ ∂ ∂ 
�

H
     (11) 

 

The explicit term contains the contributions from the first solvation shell of water 

molecules around the solute, while the implicit term contains the contributions of all 

other water molecules in the system. We approximate the implicit term by a continuum, 

obtained by integrating the attractive part of the LJ potential between a distance RC and 

infinity: 

 

 ( )24
C

Impl LJ
R

E r V r drπ
∞

= ∫        (12) 

 

Substituting the attractive part of the LJ potential in the above equation and integrating, 

we obtain: 

 

 
6

6 4

3

16
16

3C
Impl

R
C

E r dr
R

πεσ
πελσ λ

∞ −= − = −∫      (13) 
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where σ and ε are the LJ solute-solvent diameter and well depth, respectively. The 

derivative of equation (13) with respect to λ yields a constant term, as expected. 

 Regarding the explicit term, we make the rather crude assumption that all the 

nW water molecules in the first solvation shell are at the same distance R from the solute. 

With this assumption, the potential energy is given simply by the attractive term 

multiplied by nW. Here we must take the soft-core expression, equation (2), for the 

attractive term: 

 

 
( )

6

6 6

4

1

W
Expl p

n
E

R

εσ λ

ασ λ
= −

− +
      (14) 

 

Taking the derivative with respect to λ yields: 

 

 
( ) ( ) ( )

( ) ( )

6
1

2
6

1 1
4
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   (15) 

 

By taking p = 1 for the soft-core power (see Section 2) and expanding, we obtain an 

expression of the form: 

 

 2

2

3 4Attr

A
B

A Aλ λ λ
∂ −  = − ∂ − + 

H
      (16) 

 

where once more we take A2, A3, A4 and B as adjustable parameters. Now all we need to 

do is combine equations (10) and (16) to obtain a fitting function for the Hamiltonian 

derivative. Before we do that, however, we introduce an additional requirement: 
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 2
0

4

lim 0
A

K B
A

λ λ→

∂  = ⇒ − = ∂ 

H
     (17) 

 

This means that all the constant terms will cancel out and the curve will go through zero 

at λ = 0. The final expression, with 5 adjustable parameters, is: 

 

 2 2 2
0 1 2

3 4 4LJ

A A
A A

A A A
λ λ

λ λ λ
∂  = + − + ∂ − + 

H
    (18) 

 

Equation (18) has an analytic integral that depends on the nature of the roots of the 

quadratic expression in the denominator of the third term. In fact, if any of the roots 

falls between 0 and 1, the function will have a discontinuity in our region of interest. To 

avoid this, we can require that the discriminant of the polynomial be always negative, so 

that both roots are complex. This means adding the following constraint to the fitting 

procedure: 

 

 
2

4 34 0U A A= − >         (19) 

 

In practice, we found out that a strict use of this (unnecessarily strong) constraint was 

not needed, provided that the initial estimate of parameters A3 and A4 obeyed the above 

inequality. When equation (19) is obeyed, the integral of equation (18) between 0 and 1 

is given by: 

 

 

( )30 32 1 2

4

22
arctan arctan

3 2
LJ

AA AA A A
G

A U U U

 −  
∆ = + + + − +   

    
 (20) 
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All fits were performed using a non-linear weighted least squares routine, as 

implemented in the xmGrace software
34

.  

 

4. Results and Discussion 

4.1 – Electrostatic component 

 We begin by analyzing the electrostatic contribution to the hydration energy of 

methanol (for the non-polar methane molecule, this contribution is zero). The data for 

the total contribution (i.e., vacuum - water) are presented in Figure 1 for the 129 λ 

values considered. The full data set together with the corresponding standard deviations 

for each simulation are given in Supporting Information, Tables S5 and S6. As we can 

see, the curve is smooth and monotonic, and the sampling error is rather small for all 

data points. Linear response theory predicts a quadratic dependence of the free energy 

with respect to the solute charge
12

, which results in a linear dependence for the 

derivative of the free energy with respect to λ. However, the data of Figure 1 exhibit 

significant deviations from linearity, and thus suggest a breakdown in linear response 

theory. This may be attributed to the fact that the solvent is not a uniform dielectric, and 

thus specific interactions between the solute and the solvent invalidate the linear 

coupling assumption. This was also verified in other works, e.g. for the 

charging/uncharging of simple molecules, such as monoatomic ions
9
, or for more 

complex molecules
8
. Indeed, our data could not be accurately fitted using either a linear 

or a quadratic expression, even for a solute as simple as methanol, and the departure 

from linear behavior is expected to increase as the solute becomes more complex. 
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Figure 1: Electrostatic contribution (vacuum – water) to the derivative of the Hamiltonian with 

respect to λ for methanol (open circles with error bars). The lines are fits to the full and reduced 

data sets using a quartic polynomial function. 

 

 We have fitted the data of Figure 1 to polynomials of increasing degree, 

following equation (7), and the results are shown in Table 1 (the respective fits are 

depicted in supporting information, Figure S1). It is clear that the root mean square 

(RMS) error of the fit decreases significantly from a quadratic to a quartic polynomial, 

but then shows no significant change as nP is further increased. A statistical estimate of 

the quality of the fit is given by the χ
2
 value, which should be of the same order as the 

number of degrees of freedom of the fit
29

 (in this case, N-nP). The improvement is 

remarkable upon increasing nP from 2 to 4, but there is only a small change by further 

increasing the polynomial degree. Finally, the error in the value of the integral 

computed analytically from the fitting function relative to the value calculated by 

numerical integration of the data using Simpson’s rule, denoted as εR, actually shows a 

minimum at nP = 4. This analysis leads us to conclude that the electrostatic contribution 

curve is ideally fitted by a polynomial of degree 4. 
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Table 1 – Results obtained by fitting the electrostatic contribution data for methanol to 

polynomial functions of increasing degree (nP). 

nP RMS error 

2

PN n

χ
−

 ∆GElec (kJ/mol) εR (%) 

2 0.1892 104.6 -26.225 0.690 

3 0.1132 16.59 -26.351 0.216 

4 0.0899 0.997 -26.407 0.002 

5 0.0895 0.872 -26.406 0.007 

6 0.0894 0.516 -26.401 0.026 

 

 Now that we have established the optimal fitting function, it is time to 

compare the precision of the numerical methods with the analytic integration as the 

number of data points (N) is reduced. For this purpose, we have generated reduced data 

sets with fewer λ values by removing points from the full data set, such that the points 

in the reduced data sets were spaced as evenly as possible. Most of these reduced sets 

(i.e., with N = 65, 33, 17, 9, 5, and 3) were generated by dividing the original number of 

intervals (128) by successive powers of 2, and so the points were all evenly distributed. 

For the other reduced sets (i.e., N = 24, 13, 11, and 7), only one or two points at the 

extremities of the integration range were not evenly distributed. For each of the reduced 

data sets, the free energy was computed both numerically, using either the trapezoidal 

rule, equation (4), or Simpson’s rule, equation (6), and analytically, after fitting the data 

set to a quartic polynomial. The fits using some of the reduced data sets, as well as for 

the full set, are shown as lines in Figure 1. In Figure 2, we plot the absolute error in the 

free energy, relative to the reference case (numerical integration with Simpson’s rule 

using the complete 129-point data set), as a function of the number of points in the data 

set, for the three integration methods considered. The full results of our analysis of the 
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electrostatic component, including values of the fitting parameters, χ
2 

values for the fits, 

and total free energies, are given in Supporting Information, Table S8. 

 

Figure 2: Absolute error in the electrostatic contribution to the free energy, relative to the result 

for the full data set, as a function of the number of points used in the integration. Open circles 

are for the trapezoidal rule, open diamonds for Simpson’s rule and full triangles for the 

analytical integration of the fitting function. 

 

 Analyzing Figure 1, we can see that with as few as 5 evenly spaced data 

points, the behavior of the entire curve is well captured by the fitting function. When N 

is reduced even further, one runs into over-fitting problems, i.e., the polynomial degree 

is higher than the number of data points available for the regression. In this situation, 

the number of degrees of freedom of the fit exceeds the information content of the data, 

and there is arbitrariness in the final fitting model. Indeed, for the data set with 3 points, 

we have used a quadratic function, rather than a quartic – as can be seen from Figure 1 

the results are not very satisfactory. 

 From Figure 2, we can see that using up to 17 points all three methods yield 

free energies that are within 0.05 kJ/mol from the reference value. However, if the 
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number of points is reduced further, the error of the trapezoidal rule increases 

significantly. Remarkably, both the Simpson rule and the analytic integral based on the 

fitting function perform extremely well down to 5 data points. This is understandable if 

we consider the shape of the curve (Figure 1) – the convex shape and monotonic 

behavior means that the linear interpolation between successive points that is at the core 

of the trapezoidal rule will produce a systematic underestimation of the free energy. 

Naturally, this systematic error can be reduced by increasing the number of points. On 

the contrary, both the piecewise quadratic interpolation of Simpson’s rule and the 

quartic polynomial fit are able to correctly capture the curvature of the data, and require 

only a very small number of intermediate points to yield a precise free energy value. 

This finding is quite important if we take into account that the large majority of 

calculations of the electrostatic contribution to the free energy are carried out with fewer 

than 17 points and using the trapezoidal rule to compute the integral. Thus it is likely 

that most results in the literature present a systematic bias that may be quite significant. 

 

4.2 – Lennard-Jones component 

 We turn now to an analysis of the integration of the LJ contribution to the 

free energy. The full data set, including the corresponding standard deviations, is 

provided in Table S5 and plotted in Figure 3 for both methane and methanol. The curve 

for the LJ contribution is dominated by a prominent peak located between 0.2 and 0.3 

for both solutes; it first increases smoothly at low values of λ, and decreases again 

smoothly after the peak. This shape is much more complex than for the electrostatic 

contribution (Figure 1). It is also important to notice that the sampling errors are also 

much larger than for the electrostatic contribution, particularly in the vicinity of the 

peak. This is shown more clearly in Figure S2 of the Supporting Information. The 
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behavior of the LJ curve reflects two competing factors: unfavorable excluded volume 

effects due to cavity creation in the solvent and favorable solute-solvent interactions
35

. 

This interpretation has formed the basis for our development of the fitting function, 

equation (18). In fact, it is important to notice that the data to the left of the peak are 

very well fitted by our partial expression for the cavity formation term, equation (10), 

while the data to the right of the peak are well described by the expression derived for 

the attractive term, equation (16). These partial fits to the data, depicted in Figure 4 for 

the case of methane, validate our approach in developing the fitting function for the LJ 

contribution to the free energy. 
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Figure 3: Lennard-Jones contribution to the Hamiltonian derivative with respect to λ for: a) 

methane; b) methanol (open circles with error bars). The lines are fits to the full and reduced 

data sets, as indicated, using equation (18). 
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Figure 4: Partial fits to the LJ contribution for methane. The data at low λ were fitted to 

equation (10), while the data for high λ were fitted to equation (16). 

 

 The full data sets were fitted to equation (18) and the results are shown as 

thick lines in Figure 3. As we can see, the function is able to correctly describe the data 

in the entire region of interest, despite the large amount of statistical noise in the 

vicinity of the peak. Using the same procedure as in the case of the electrostatic 

component, we have generated reduced data sets and carried out the integration using 

the two numerical methods and the fitting function. The fitted curves are shown as lines 

in Figure 3, while the full results of the analysis, including values of the fitting 

parameters, χ
2 

values for the fits, and total free energies, are provided in Supporting 

Information, Tables S9 and S10. In Figure 5, we show the absolute error in the free 

energy, relative to the reference case, as a function of the number of points in the data 

set, for the three integration methods considered. 
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Figure 5: Absolute error in the LJ contribution to the free energy, relative to the result for the 

full data set, as a function of the number of points used in the integration, for: a) methane; b) 

methanol. Open circles are for the trapezoidal rule, open diamonds for Simpson’s rule and full 

triangles for the analytical integration of the fitting function. 
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 It is clear from Figure 3 that the fitting function is able to correctly describe 

the trend of the Hamiltonian derivative even using only a small number of points in the 

fit (a good description is obtained with as few as 11 points). With 9 points, the fitted 

curve starts to deviate significantly from the full data set, particularly in the case of 

methane (see thick dashed line in Figure 3a), and with 7 points the performance is quite 

poor. The performance of the different integration methods can be assessed 

quantitatively by analyzing Figure 5. First of all, it is worth noticing that in general the 

errors are larger and show more scatter than for the electrostatic component, which is 

caused by the higher degree of statistical noise in the simulated data. Furthermore, 

Simpson’s rule now does not significantly outperform the trapezoidal rule – since the 

function has a maximum, the systematic error of the trapezoidal rule tends to cancel out 

after the full integration. As expected, the error tends to increase as the number of points 

is reduced, but this decrease is not very pronounced down to N = 17. In this region, all 

three integration methods show a similar performance. As the number of points is 

reduced further, the error of both numerical integration schemes increases significantly. 

Using the fitting function, however, one is able to maintain a good precision down to 

about 11 points, and the difference relative to the numerical methods is even more 

marked for 9 points. Probably the most important conclusion of our analysis is that 

when considering a small number of intermediate stages (we recommend using 11 for 

the LJ contribution) the fitting function always produces more precise results than the 

two numerical integration techniques. 

 At this point, it is worth commenting on the possibility of using different 

fitting functions for the LJ component. Shyu and Ytreberg
13

 have performed a 

systematic analysis of polynomial fits to free energy data, but have only applied their 

procedure to simple test cases with monotonous curves and analytical solutions. In more 
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realistic situations, such as those presented here, polynomial functions are unable to 

correctly capture the behavior of the Hamiltonian derivative. In fact, even a fit to a 

polynomial of degree 10 using the full data set shows unphysical oscillations near the 

integration limits (see Figure S3). We have also tested some alternative functional forms 

(e.g., rational functions), but, although reasonable, their overall performance was not as 

good as that of equation (18). These studies are presented in detail in Section S.2 of the 

Supporting Information. 

 

4.3 – Applicability test 

 Our study of different integration methods, performed above, focused on two 

small solutes, so as to enable simulations at a large number of intermediate values of λ. 

In this section, we assess whether the conclusions drawn from the analysis of the 

prototype systems are applicable in realistic free energy calculations involving more 

complex molecules. For that purpose, we attempt to compute the hydration energy of 2-

methylbutanol and the hydration energy of a multifunctional compound (4-nitrophenol) 

using the methodology proposed above. 

Previously, we have seen that the deviation in the electrostatic contribution to 

the free energy was very small and practically independent of the integration method 

down to N=17 (Figure 2). The same can be said of the LJ component down to N=33 

(Figure 5). For that reason, we have carried out simulations for 2-methylbutanol and 4-

nitrphenol using 17 points for the electrostatic component and 31 points for the LJ 

component, to serve as reference values. Our previous analysis showed that sufficiently 

precise free energies could be obtained with N=5 for the electrostatic component (using 

the fitting function or Simpson’s rule) and N=11 for the LJ component (using the fitting 

function). Thus, we have generated reduced data sets with these values of N for each 
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respective component. The full results of the fitting procedure are given in Supporting 

Information, Tables S11 to S14 (including additional reduced data sets that were tested). 

 

Figure 6: Fits to the data for methylbutanol using the full and reduced data sets for: a) 

electrostatic contribution using equation (7); b) Lennard-Jones contribution using equation (18). 
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 In Figure 6 we show the fits to the full and reduced data sets of 2-

methylbutanol using equations (7) and (18) for the electrostatic and LJ contributions, 

respectively. In both cases, the fits using the reduced data sets are able to provide a good 

description of the behavior of the Hamiltonian derivative. In Tables 2 and 3 we present 

the reference values for each contribution (full data set integrated using the Simpson 

rule) as well as the deviations from this value using the reduced sets and different 

integration methods. The analysis of both solutes confirms our previous conclusions 

based on methane and methanol – good results for the electrostatic component (error 

below 0.15 kJ/mol) are obtained using either the Simpson rule or the fitting function, 

while for the LJ component, only the fitting function is able to provide sufficiently 

precise free energies (error of 0.15 kJ/mol) based on the reduced data sets. The results 

are even more striking for 4-nitrophenol, with errors below 0.05 kJ/mol obtained using 

our suggested protocol, particularly considering the complexity of this multifunctional 

molecule. This confirms our claim that a correct choice of integration method can 

substantially improve the precision of solvation free energy calculations, even for 

complex solutes. Another way of thinking about this is to say that using our proposed 

integration methods one can make free energy calculations faster by a factor between 3 

and 4, by reducing the necessary number of intermediate points, without significant loss 

in precision. 

Table 2 – Results (in kJ/mol) for the two contributions to the hydration energy of 2-

methylbutanol, and deviations from the reference value using different integration methods. 

 Electrostatic Lennard-Jones 

∆GReference -26.86 9.62 

Trapezoidal ReferenceG G∆ − ∆  0.568 0.623 

Simpson ReferenceG G∆ − ∆  0.103 0.901 

Analytic ReferenceG G∆ − ∆  0.140 0.152 
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Table 3 – Results (in kJ/mol) for the two contributions to the hydration energy of 4-nitrophenol, 

and deviations from the reference value using different integration methods. 

 Electrostatic Lennard-Jones 

∆GReference -33.39 1.75 

Trapezoidal ReferenceG G∆ − ∆  0.521 0.365 

Simpson ReferenceG G∆ − ∆  0.042 0.509 

Analytic ReferenceG G∆ − ∆  0.010 0.044 

  

 Table 4 summarizes our results for the total hydration energy of the four 

solutes considered. The reference values (from the full data sets) are compared to results 

obtained using reduced data sets of the recommended size (11 for LJ and 5 for 

electrostatic) integrated using the fitting functions. Although it is not our aim here to 

discuss the accuracy of the molecular model employed, it is nevertheless instructive to 

compare our results with experimental data. Encouragingly, our results are close to 

experimental values for the two simple solutes, and agree very well with experiment for 

2-methylbutanol. For the case of 4-nitrophenol the agreement is worse, which illustrates 

the weakness of current force-fields in predicting hydration free energies of 

multifunctional compounds, as discussed elsewhere
37

. 

 

Table 4 – Results for the total hydration energy (in kJ/mol) of the three solutes compared to 

experimental data
38, 39

. 

Solute ∆GReference ∆GAnalytic ∆GExperimental 

Methane 9.0 8.9 8.1 

Methanol -19.8 -20.0 -21.2 

2-Methylbutanol -17.2 -17.5 -18.0  

4-Nitrophenol -31.6 -31.7 -44.0 
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5. Conclusions 

 In this work, we have carried out a detailed analysis of the effect of the 

integration method on the calculation of solvation free energies using thermodynamic 

integration of molecular simulation data. By performing a very large number of 

simulations (129 for each component) at intermediate values of the coupling parameter, 

we have shown that the Hamiltonian derivative with respect to λ for the electrostatic 

component displayed a smooth and monotonous behavior, while that for the Lennard-

Jones component had a more complex shape with a prominent peak at low λ values. For 

the electrostatic component, the commonly used trapezoidal rule introduces systematic 

errors in the free energy as the number of intermediate points decreases. However, using 

either Simpson’s rule or a fitting polynomial of degree 4, these errors are significantly 

reduced and one is able to obtain precise free energies with as few as 5 intermediate 

points. For the LJ component, however, both numerical integration methods show 

approximately similar performances, with the errors increasing substantially as the 

number of points decreases below about 17. We have derived a physically-based fitting 

function that is able to provide a good description of the LJ Hamiltonian derivative 

throughout the entire integration interval. Analytical integration of this fitting function 

produces accurate free energies with as few as 11 intermediate points. It is important to 

notice, however, that convergence of the individual simulations is a requirement for 

obtaining precise free energies. Indeed, if the data set is not sufficiently converged, no 

integration method (including regression) will produce precise estimates. Our data were 

obtained using sampling times of 5 ns for each intermediate point, and convergence was 

checked thoroughly. 

 Based on our study of hydration of simple solutes, we are able to recommend 

the following protocol for free energy calculations using thermodynamic integration: i) 
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for the electrostatic component, one should run simulations at 5 evenly spaced values of 

λ and integrate the data using either Simpson’s rule or by fitting to a quartic 

polynomial; ii) for the LJ component, one should run 11 simulations at evenly spaced 

points, fit the data to equation (18), and calculate the free energy from the analytic 

integral of the fitting function, equation (20).  

 We have subsequently tested this protocol for more demanding cases – 

hydration of 2-methylbutanol and 4-nitrophenol. The results obtained confirm our 

previous conclusions, thus showing that the above protocol is robust and can be applied 

for the solvation of more complex solutes.  

 In summary, the use of an appropriate integration method can significantly 

improve the precision of free energy calculations using thermodynamic integration, for 

a given computational cost, or, alternatively, can make the calculations much faster for a 

given precision level. The integration error implicit in the TI method is commonly seen 

as a disadvantage of this approach relative to other methods, like thermodynamic 

perturbation theory. Our contribution significantly reduces this disadvantage, making TI 

even more competitive. We believe such improvements are required so that solvation 

free energy data can begin to be routinely employed in force-field parameterization, and 

can play a more active part in drug design efforts. Although our proposed protocol and 

choice of fitting functions is specific to solvation free energy calculations, the principles 

of the method may be extended to other types of free energy calculation (e.g., potentials 

of mean force), with appropriate adaptations in the functional forms and in the required 

number of intermediate points. 
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