Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Bayesian latent variable models for collaborative item rating prediction

Harvey, Morgan Alexander and Carman, M. and Ruthven, Ian and Crestani, Fabio (2011) Bayesian latent variable models for collaborative item rating prediction. In: ACM CIKM, 2011-03-31.

[img]
Preview
PDF
p699_harvey.pdf - Final Published Version

Download (857kB) | Preview

Abstract

Collaborative filtering systems based on ratings make it easier for users to find content of interest on the Web and as such they constitute an area of much research. In this paper we first present a Bayesian latent variable model for rating prediction that models ratings over each user's latent interests and also each item's latent topics. We describe a Gibbs sampling procedure that can be used to estimate its parameters and show by experiment that it is competitive with the gradient descent SVD methods commonly used in state-of-the-art systems. We then proceed to make an important and novel extension to this model, enhancing it with user-dependent and item-dependant biases to significantly improve rating estimation. We show by experiment on a large set of real ratings data that these models are able to outperform 3 common baselines, including a very competitive and modern SVD-based model. Furthermore we illustrate other advantages of our approach beyond simply its ability to provide more accurate ratings and show that it is able to perform better on the common and important case where the user profile is short.