Ranking Social Bookmarks Using Topic Models

Morgan Harvey and lan Ruthven
University of Strathclyde

Computer and Information Sciences Department

Glasgow, United Kingdom
{morgan,ir}@cis.strath.ac.uk

ABSTRACT

Ranking of resources in social tagging systems is a difficult
problem due to the inherent sparsity of the data and the vo-
cabulary problems introduced by having a completely unre-
stricted lexicon. In this paper we propose to use hidden topic
models as a principled way of reducing the dimensionality of
this data to provide more accurate resource rankings with
higher recall. We first describe Latent Dirichlet Allocation
(LDA) and then show how it can be used to rank resources
in a social bookmarking system. We test the LDA tagging
model and compare it with 3 non-topic model baselines on a
large data sample obtained from the Delicious social book-
marking site. Our evaluations show that our LDA-based
method significantly outperforms all of the baselines.

Categories and Subject Descriptors

H.3.3 [Information Storage & Retrieval]: Information
Search & Retrieval

General Terms

Algorithms, Experimentation

Keywords
Topic Models, Collaborative Tagging, Social Bookmarking

1. INTRODUCTION

Social tagging systems provide a new way for Internet
users to organise and share their own digital content and
content from other users. Users are able to annotate each
resource with any number of free-form tags of their own
choosing without having to adhere to an a-priori set of key-
words.Their simple nature and unrestricted vocabulary is a
boon for annotators, however searching for resources of in-
terest in social tagging systems tends to be a frustrating pro-
cess. Analyses of tagging systems [2] have shown that term

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CIKM’10, October 26-30, 2010, Toronto, Ontario, Canada.

Copyright 2010 ACM 978-1-4503-0099-5/10/10 ...$10.00.

1401

Mark J. Carman
University of Lugano
Faculty of Informatics
Lugano, Switzerland

mark.carman@lu.unisi.ch

use tends be very inconsistent between different users result-
ing in a large number of polysemous and synonymous tags.
This has a highly detrimental effect on search performance
unless the system deals with this inherent variation in some
way. Several studies have shown that obtaining high consis-
tency among different taggers is very difficult to achieve and
can be affected by many factors including vocabulary use,
personal understanding of the resource and language [8, 5].

In current social tagging systems, search algorithms tend
to be rather simplistic in nature, often relying on simple
term matching algorithms in order to rank resources given a
query and seek to exploit the aggregated annotations across
all users, the so called “wisdom of the crowds”. This simple
approach to the problem fails to deal with the vocabulary
problems noted above and can result in quite poor rankings,
particularly when users make use of very specific or unusual
tags.

In this paper we investigate utilising techniques based on
topic modelling to rank resources from a social bookmark-
ing system given simple search queries. We first investigate
related work in both social tagging and general information
retrieval fields. Next we introduce topic modelling by de-
scribing the well-known Latent Dirichlet Allocation model
[1, 3] and then go on to explain how it can be used to model
tagging data. We describe algorithms for ranking resources
using this model and evaluate its performance based on a
large sample of data from the social bookmarking site deli-
cious and compare this with a number of competitive non-
topic model baselines. Finally we conclude with a discussion
of the results of the research and some suggestions for future
work.

We now describe topic models, explain why we have cho-
sen them as a manner of factorising social tagging data and
show how they can be used to rank resources.

2. TOPIC MODELS

Topic models attempt to probabilistically uncover the un-
derlying semantic structure of a collection of resources based
on analysis of only the vocabulary words present in each re-
source, this latent structure is modelled over a number of
topics which are assumed to be present in the collection.

In order to use these techniques we need to construct rep-
resentations of documents made up of terms from a shared
vocabulary. In this case our “documents” are the URLs (or
in social tagging parlance resources) users have chosen to
bookmark. We must therefore construct the documents rep-
resentations by conflating the tags used by all users to anno-
tate each bookmarked URL. Each URL is now represented

by the complete set of tags used to describe it by users of the
social tagging system. Ideally this approach should allow us
to: (1) generalise vocabulary terms to deal with synonymy
and polysemy and (2) generalise the resource representa-
tions based on the similarity to other resources in the data
set. These models operate using Bayesian inference which is
useful when reasoning from noisy data, this is particularly
appealing in this context as we expect the distributions of
tags over resources to be both sparse and noisy.

LDA represents documents as random mixtures over la-
tent topics which are random mixtures over observed words
in the vocabulary. The model possesses a number of ad-
vantageous attributes; it is fully generative meaning that it
is easy to make inferences on new documents or terms and
overcomes the overfitting problem present in models such
as Probabilistic Latent Semantic Indexing (pLSI) [4]. Also
since in LDA each document is a mixture over latent topics it
is far more flexible than models that assume each document
is only drawn from a single topic.

The parameters estimated in LDA are two matrices ® and
O containing estimates for the probability of a word given
a topic P(w|z) and a topic given a document P(z|d). Thus
each column of the respective matrices contains (estimates
for) a probability distribution over words for a particular
topic and over topics for a particular document, denoted ¢.
and 64 respectively. In order to prevent overfitting the data,
LDA places a symmetric Dirichlet prior on both these distri-
butions, resulting in the following expectations for the pa-
rameter values under the respective posterior distributions
P(¢.|w,z) and P(04|z,d), where w is the vector of words
occurrences w; in the corpus, z is an assignment of topics to
each word position z; and d is the vector of documents d;
associated with each word position:

» Nu:+Bw

Puw|z = W
é _ Nz,d+0é%
z|d = Nd+06

Here Ny,., N, 4 and N are counts denoting the number
of times the topic z appears (in z) together with the word
w, with the document d and in total. W is the vocabulary
size and Z is the number of topics. Symmetric Dirichlet
priors with hyperparameters a and [are placed over the
distributions 64 and ¢, and essentially act as a pseudo count
indicating a relation to smoothing in language models. This
allows the model to fall back on the priors in the event of
sparse data.

Exact inference of the LDA model is intractable, however
a number of methods of approximating the posterior distri-
bution have been proposed including mean field variational
inference [1] and Gibbs sampling [3]. Gibbs sampling is a
Markov chain Monte Carlo method where a Markov chain is
constructed that slowly converges to the target distribution
of interest over a number of iterations. Each state of the
Markov chain is (in this case) an assignment of a discrete
topic (from 1 to Z) to each z;, i.e. to each observed word in
the corpus. In Gibbs sampling the next state in the chain
is reached by sampling all variables from their distribution
when conditioned on the current values of all the other vari-
ables. For LDA the Gibbs sampling assumes the following:

1402

P(wild:)

After sufficient iterations of the sampler, the Markov chain
converges and the parameters of the LDA model can then
be estimated from z. We can assume that the chain has
converged when we observe minimal change in the model
likelihood over successive samples, in the case of LDA the
likelihood is:

P(W,Zl@,@) = Hz(ﬁw”zéz\di

For increased accuracy, we average parameter estimates
over consecutive samples from the Markov chain. We can
now use our estimated parameters ¢ and © to compute a
variety of useful distributions such as which documents are
similar to each other, which words are similar to each other
and by sampling over new data we can easily incorporate
new documents into our model without having to re-run the
entire algorithm.

3. RANKING RESOURCES

We now describe formulas for ranking resources using the
parameters that we have estimated in the topic models de-
scribed above. Given a query ¢ we wish to return to the user
a ranked set of resources (d € D) according to their likeli-
hood given the query under the model, which in the case of
LDA can be estimated as follows:

P(d|q) o< P(d)P(q|d) P(d) [T P(wl|d)

= P[] D P(wlz)P(2|d)
where P(d) = /\(%) Y- ,\)%

Notice that the ranking formula consists of the product of
2 distinct parts; a prior on the probability of the resource,
P(d) and the probability of the query given the resource,
P(q|d). Note that we smooth the document prior by linearly
interpolating with a uniform distribution, this was deemed
necessary due to the fact that the length of a “document” in
this case does not have the same meaning as it would in a
standard IR system. In the next section we use a large sam-
ple of data obtained from the popular social bookmarking
site delicious to evaluate the performance of these models.

4. EXPERIMENTS

In order to evaluate the relative performance of our models
on real-world data we performed a crawl of the popular social
bookmarking site delicious. To ensure a random sample of
recent data we began by downloading the 100 most recent
URLSs submitted to delicious and recorded the usernames of
the users who bookmarked them, continuing until we had
collected a sample of 60,663 unique usernames. For each
of these usernames we downloaded the respective user’s 100
most recent bookmarks (as this is the largest number of
bookmarks the API will allow access to). This resulted in

not all users having the maximum number of bookmarks
with 31% of the users having less than 100.

Each “document” (URL) is uniquely identified by comput-
ing a 32 bit MD5 hash of the complete URL, each URL and
user in the data set was assigned a unique and anonymous
ID number. To clean the resulting data set, we selected
only the URLs which had been bookmarked by more than
2 unique users to ensure that all resources will always ex-
ist at least once in the training data. In order to give our
systems reasonably complete user profiles to work from we
selected only the users who had bookmarked more than 60
unique URLs from the remaining data after the first pass.
Each remaining bookmark is a triple consisting of a URL
identifier, a user identifier and a set of tags. We parsed the
set of tags for each bookmark and finally removed all tags
that appeared less than 2 times in the data set.

The final dataset includes 111,232 unique resources (URLs)
with a total of 569,117 individual bookmarks by 9,587 users.
The vocabulary size was 14,023 and the total number of tag
assignments was 2,473,738.

4.1 Evaluation methodology

We separated the dataset into training and testing subsets
by retaining the last 10% of bookmarks by each user for test-
ing. In doing so we ensure that the test data is distributed
over users in the same way as the training data. In order
to generate queries to input into our ranking algorithms we
use the set of tags from each test set bookmark as a pseudo
query. We now need some form of relevance judgement for
each pseudo-query and since we know what resource was
chosen for each bookmark we can classify a ranked resource
as being relevant if it is the same resource the user actually
bookmarked.

We have chosen to use this method as we are interested in
personalised results, therefore only the user(s) who originally
tagged the resource can really say whether it is truly relevant
to them or not. We believe this will accurately reflect the
performance of a live system and is likely to actually give a
slight under-estimate of the true performance.

In order to evaluate ranking performance we calculated
the success at rank k (S@k)* and the mean reciprocal rank
(MRR). These 2 measures are briefly described below:

S@k - “success at rank k” the ratio of times where there
was at least 1 relevant document (resource) in the first
k returned.
S@k = & Sl I(rank(d;, ¢;) < k)

MRR = “mean reciprocal rank” the multiplicative in-
verse of the rank of the first relevant suggested re-
source, averaged over test resources.

—_ 1 NMel 1
MRR = lq] Zz rank(d;,q;)

Since we are primarily interested in how well these models
rank URLs we report the S@k and MMR up to rank 10 as
they are the most commonly reported in other literature
since people tend to only pay attention to the first page of
results in a ranked list.

"'We note that since we only have one bookmarked URL per
set of tags, precision at rank k (P@k) is equal to S@Qk/k and
thus we do not report it separately.

1403

4.2 Parameter settings and sampling

We experimented with a large range of parameter settings
for both the number of topics in each model, (discussed fur-
ther below), and the hyperparameter settings for each of the
prior distributions. We set the concentration parameters «
and [to be 25.0 and 0.1W respectively, which means the a
setting is slightly lower than is common in the literature [3].
We found that a slightly smaller value provided better re-
sults, perhaps because the average length of a “document”
(resource) in these systems is much less than in a more stan-
dard IR corpus. We set A, the smoothing parameter for the
probability of a resource to 0.5.

For sampling we use the Rao-Blackwellised Gibbs sampler
[3]. For all models we sampled the chain for 300 iterations in
total, as this appeared to consistently give good convergence
in terms of model likelihood, and discarded the first 200
samples as chain “burn-in”. The remaining 100 samples from
the end of the chain were averaged over to obtain the final
parameter values.

4.3 Baselines

In order to usefully evaluate the performance of the topic
models we chose 3 different baselines; SMatch - which em-
ulates the kind of simple matching formulas currently used
when searching social tagging sites, Okapi BM25 - a popu-
lar and quite robust probabilistic retrieval framework and
BayesLM - a competitive baseline Language Model with
Bayesian smoothing. For each of the baselines we optimised
any free parameters to ensure a fair and unbiased compar-
ison with the topic models. Here we briefly describe the
formulas for these models:

SMatch score(d,q) =3_,,c, Nuw.a
_ Ny, a(k1+1)
BM25 score(d,q) = 3_,¢, IDF(w)'Nq,,,d+k1(1—b+ba,‘f;‘dl)
where IDF(w) = ¥5Med35 |d| is the length of re-

source d and awvgdl is the average length of a resource
over the whole training corpus. k1 and b are free pa-
rameters which we optimised to 2.0 and 0.1 respec-
tively.

BayesLM P(d|g) = P(d) [[,, ¢, "t 5a/™)

where 1 is the Bayesian smoothing parameter which

we optimised to 0.75.

Note that BayesLLM is the same as the non-personalised
model used by Wang et. al. [6] except that we have adapted
it to deal with queries of lengths greater than one. We tried
using their full personalised model as a baseline, but found
that it performed extremely poorly. This is perhaps because
we are using a much larger data set with a vocabulary 14
times larger than theirs. In this case their choice to use
raw tags as user profiles (rather than reduced dimensionality
features as in this paper) may have resulted in significant
overfitting and poor generalisation. We therefore do not
report results from their personalised model.

5. RESULTS

Table 1 shows the results of the ranking experiments for
all of the models, for the topic model we set the number
of topics at 250. Between the more “conventional” rank-
ing methods we see that the language model with Bayesian

S@ail S@s S@10 | MRR@10
SMatch 0.0555 | 0.1372 | 0.1860 0.0900
BM25 0.1701 | 0.2975 | 0.3376 0.2238
BayesLM | 0.1819 | 0.3299 | 0.3772 0.2440
LDA 0.1994* | 0.3397 | 0.3936* 0.2579*

Table 1: Ranking performance of all models on the
test data set. * indicates the result is significantly
better than all baselines (p < 0.05).

0.28
--- BM25

027 | ™ Bayes LM
o
5 0.25
id
s 024

0.22

0.21

100t 125t 150t 175t 200t 225t 250t

Number of topics Z

Figure 1: MRR@10 over varying numbers of topics.

smoothing has the best overall performance and considering
its relative simplicity, it performs very well. BM25 is clearly
less suited to this kind of data than it is to more normal doc-
uments and the SMatch algorithm - unsurprisingly - returns
particularly poor results.

Comparing the “conventional” models with the topic model
results show that over all metrics the topic model performs
significantly better than the baselines. This is in contrast to
results from previous work into ranking using topic mod-
els [7] and perhaps highlights the difference between the
“documents” constructed from social tagging data and much
longer real-world documents more commonly discussed in
IR literature. In the case of social tagging data, the topic
model’s generalisation of the data and ability to deal with
some of the vocabulary problems noted earlier are much
more beneficial than perhaps they are with more normal
corpora.

5.1 Varying the number of topics

When using hidden topic models an important considera-
tion is how complex a model we should use in terms of the
number of latent topics. Therefore we estimated parameters
for the topic model over different numbers of topics to see
how retrieval performance was effected. Figure 1 shows the
results for the metric MRR@10 over the range of topics from
100 to 250 with increments of 25. We also show the results
from the 2 most competitive non-topic model baselines to
allow direct comparison.

One can see quite clearly from the figure that as we in-
crease the number of topics, the performance also increases.
It is apparent that we could achieve even better ranking per-
formance if we were to increase the number of topics even
further, however we would expect that at some point perfor-
mance would peak and we would then be in danger of over-
fitting the model. Furthermore when using such systems a
balance should be made between model complexity in terms

1404

of topics and ranking performance, since the amount of time
required to rank resources using the models is linear in the
number of topics.

6. CONCLUSIONS

In this work we have discussed the problems facing rank-
ing algorithms when dealing with social tagging data and
proposed the use of hidden topic models to deal with its in-
herent sparsity and vocabulary ambiguity. We highlighted
the 2 most prominent issues resulting from this kind of data
and indicated how such models might be able to at least
partially overcome these obstacles.

In order to test the relative performance of the models
we proposed an evaluation framework utilising real data ob-
tained by crawling the popular social bookmarking website
Delicious and briefly described 3 non-topic model baselines
including one previously used to research ranking in a so-
cial annotation setting. Finally we described and analysed
the results of our experiments on the social tagging data
and showed that our intuition of using topic modelling to
overcome the vocabulary problems in tagging systems was
appropriate.

The results showed that for social tagging data, the topic
modelling approaches provided better resource rankings than
even the most competitive baselines and outperformed them
all by a statistically significant margin. In future work we
would like to explore more complex models, perhaps includ-
ing information about the users into the models. Or where
we incorporate more information including perhaps the ac-
tual content of the resources or by including temporal in-
formation in the model. We also wish to explore sampling
and ranking methods that do not assume all queries are the
same and instead adapt the rankings algorithms to better
suit each individual query.

7. REFERENCES

[1] D. Blei, A. Ng, and M. Jordan. Latent dirichlet
allocation. Journal of Machine Learning Research,
(3):993-1022, 2003.

S. Golder and B. A. Huberman. The structure of
collaborative tagging systems. In Journal of
Information Science, volume 32, pages 198-208, 2005.
T. Griffiths and M. Steyvers. Finding scientific topics.
National Academy of Science, 2004.

T. Hofmann. Unsupervised learning by probabilistic
latent semantic analysis. Machine Learning,
42(1/2):177-196, 2001.

R. Hooper. Indexer consistency tests—origin,
measurements, results and utilization. Technical report,
IBM, Bethesda, 1965.

J. Wang, M. Clements, J. Yang, A. P. de Vries, and

M. J. T. Reinders. Personalization of tagging systems.
In Information Processing and Management: an
International Journal, volume 460-1, pages 58-70, 2010.
X. Wei and W. Croft. Lda-based document models for
ad-hoc retrieval. In Proceedings of the 29th Annual
International ACM SIGIR Conference on Research and
Development on Information Retrieval (SIGIR 2006),
2006.

P. Zunde and M. E. Dexter. Indexing consistency and
quality. American Documentation, 20(3):259-267, April
1969.

2]

3]

(4]

5]

(8]

