Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Demonstration of sustained and useful converter responses during balanced and unbalanced faults in microgrids

Roscoe, Andrew and Jackson, Gordon and Elders, Ian and McCarthy, J. and Burt, Graeme (2012) Demonstration of sustained and useful converter responses during balanced and unbalanced faults in microgrids. In: Electrical systems for aircraft, railway and ship propulsion (ESARS), 2012. Proceedings. IEEE, Piscataway, N.J.. ISBN 9781467313704

C_2012_Roscoe_IEEE_ESARS_InverterFaults_Final_NoFieldCodes_PostPrint.pdf - Accepted Author Manuscript

Download (797kB) | Preview


In large power grids where converter penetration is presently low and the network impedance is predominantly reactive, the required response from converters during faults is presently specified by phrases such as “maximum reactive output”. However, in marine and aero power systems most faults are unbalanced, the network impedance is resistive, and converter penetration may be high. Therefore a balanced reactive fault current response to an unbalanced fault may lead to over-voltages or over/under frequency events. Instead, this paper presents a method of controlling the converter as a balanced voltage source behind a reactance, thereby emulating the fault response of a synchronous generator (SG) as closely as possible. In this mode there is a risk of converter destruction due to overcurrent. A new way of preventing destruction but still providing fault performance as close to a SG as possible is presented. Demonstrations are presented of simulations and laboratory testing at the 10kVA 400V scale, with balanced and unbalanced faults. Currents can be limited to about 1.5pu while still providing appropriate unbalanced fault response within a resistive network.