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Experiments show that simple diffusion of nutrients and waste molecules is not sufficient to explain the
typical multilayered structure of solid tumours, where an outer rim of proliferating cells surrounds a layer of
quiescent but viable cells and a central necrotic region. These experiments challenge models of tumour
growth based exclusively on diffusion. Here we propose a model of tumour growth that incorporates the
volume dynamics and the distribution of cells within the viable cell rim. The model is suggested by in silico
experiments and is validated using in vitro data. The results correlate with in vivo data as well, and the model
can be used to support experimental and clinical oncology.

E
arly in their development, solid tumours form avascular nodules. In the absence of blood vessels, these
nodules can grow to a size of a few millimetres and develop a central core of dead cells, surrounded first by a
layer of viable but quiescent cells, and then by proliferating cells. Any further growth depends on the ability

of tumours to stimulate angiogenesis, i.e. the formation of new blood vessels that deliver oxygen and nutrients to
tumour cells1. Even in vascularized tumours it is still possible to recognize layered structures, called tumour cords,
around blood vessels, where active layers of cells wrap around the vessels, while deeper layers are mostly
necrotic2,3. Similar structures can be observed and studied in vitro with 3-dimensional aggregates of tumour cells
called multicell tumour spheroids (MTS)4,5, which are excellent experimental models. Most importantly, these
multi-layered structures determine relevant biological properties of solid tumours such as growth kinetics and
sensitivity to therapeutic treatments4,5.

Given their simple, nearly spherical geometry, MTS have long been a target of biophysical and biomathematical
modelling, in the hope of turning such models into useful tools to understand tumours and their dynamics. The
work of Araujo and McElwain6 is a comprehensive review, which also includes some more complex tumour
models that try to capture the effects of vascularization. Many of these mathematical models are based on the
seminal work of Greenspan7, who related the formation of the multi-layered structure in nodular carcinomas to
the limited diffusion of nutrients such as oxygen and glucose and of waste molecules in the tumour tissue. As a
result it has been generally accepted that the onset of central necrosis in MTS and tumour cords is due to
molecular diffusion. Consequently, modellers have mostly turned their attention to other complex aspects of
tumours such as cell migration and metastasis, biomechanics, vascularization, etc. However, experimental data
collected with multicellular tumor spheroids over two decades or more by different research groups challenge the
simple diffusive model (this evidence is reviewed in refs. 5,8). Experiments show that the formation of the central
necrotic region in MTS is uncorrelated with hypoxia, and indicate that cell death in the central region is due to a
combination of several factors that have not yet been fully characterized5,8. Recently, Tindall et al.9,10 have
constructed phenomenological mathematical models to explore the effects of known factors, such as cell cycling,
possible different pathways to cell death and the accumulation dynamics of dead materials in the inner layers,
which also hint that simple diffusion of nutrients and waste molecules alone cannot explain the structure of solid
tumours, whether they are vascularized or not.

Here we describe a new analytical model of solid tumour growth, where growth depends on the distribution of
live cells in the tumour mass. In turn, growth determines the distribution of live cells, so that there is a mutual
influence between growth and live cell distribution. The model is suggested by experiments carried out in silico
with a recently developed multi-scale computer model of MTS11,12, and is validated using data from in vitro
experiments. The computer model is lattice-free – i.e., cells are free to move and are not constrained on a fixed grid
as it happens in models where cells are represented by cellular automata – and is based on a detailed description of
the complex molecular network that regulates metabolism, of the cell cycle and cell death at the single cell level,
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and of cell-cell forces. The metabolic network implemented in the
model of individual cells includes the dynamics of oxygen, glucose
and related chemical species, amino acids, ATP, and drives the syn-
thesis of DNA and of some selected proteins, especially those that
regulate the cell cycle (pRB and cyclins). The model of individual
cells also includes dynamical checkpoints – controlled by cyclins –
and discrete events like cell division and cell death. Cell death is
determined by several factors, but the most important in this context
is the high level of metabolites – represented globally by lactate in the
computer model – that poisons and stifles cells by downmodulating
facilitated diffusion processes in the cell membrane, even when oxy-
gen and nutrients are available. Biomechanics also plays a role, as the
mechanical rearrangement of spheroids produces flows of both dead
and live cells. Eventually the live cell distribution is the product of all
these interacting factors. In previous papers13–15 we showed that this
computer model provides good quantitative estimates of biochem-
ical and biological variables, so that it is reasonable to trust the
simulation results and use the program to study features that are still
unobserved in the laboratory.

Results
An aggregate of tumour cells grows because individual cells prolif-
erate. At the very early stages of tumour growth, when no limiting
factors act upon cells, the process of cell division displays a simple
exponential dynamics. If N(t) is the cell number at time t and if vc is
the mean cell volume, then the overall volume of the cell cluster is
V (t) 5 vcN(t), and the early growth dynamics obeys the simple law:

dV
dt

~aV tð Þ

where a 5 ln 2/T, and T is the average duration of the cell cycle.
However this exponential growth is soon kept in check by other
processes, and most notably by cell death and by the subsequent cell
shrinking – a well documented process, see ref. 16 – and also by the
mechanical rearrangement of cells, if the structure is initially very
disordered. Since cells mostly die in the deeper tumour layers, shrink-
ing affects mainly the bulk of a solid tumour rather than its surface.

If F is the fraction of live cells in the tumour cluster, so that the
volume occupied by live cells is Va 5 F V, then dead cells and empty
spaces correspond to the volume fraction 1 2 F 5 (V 2 Va)/V, they
do not absorb nutrients, and keep shrinking. This means that the
differential equation for the total MTS volume must include a term
that takes into account dead cells and empty spaces as well:

dV
dt

~aVa tð Þ{d V tð Þ{Va tð Þð Þ~aF tð ÞV tð Þ{dV tð Þ 1{F tð Þ½ � ð1Þ

where d sets the timescale for the shrinking of dead cells. Using Va 5

F V we can find an equivalent equation for the dynamics of live cells

dVa

dt
~ aF tð Þzdz

d ln F
dt

� �
Va tð Þ{ d

F tð ÞVa tð Þ ð2Þ

which shows that in this model the rates of proliferation and death
are both time-dependent (see the supplementary text for a straight-
forward derivation of equation (2)). For a nearly spherical shape, the
total MTS volume is a simple function of MTS radius r5V < 4pr3/3,
and from equation (1) we find the corresponding evolution equation
for MTS radius

dr
dt

~
r tð Þ

3
azdð ÞF tð Þ{d½ � ð3Þ

where F is a function of the MTS radius r, which is itself a function of
time, so that F 5 F[r(t)]. The problem now lies in the determination
of the fraction of live cells F 5 Va/V: it is less likely to find live cells
deep inside a MTS or in a real solid tumour, and there is no sharp
boundary between layers, but the exact distribution of live cells as a

function of the distance from the MTS surface, or from blood vessels
in real tumours, is unknown. However, the simulation program11

tracks the fate of every single cell, and we know at all times the
number of live and dead cells in a simulation run, and hence the
live-cell fraction F. Since we have access to the full cell record as well,
we can also observe the fractional density f(s) of live cells – i.e., the
fraction of live cells per unit volume – as a function of the distance s
from the surface of the cell cluster, and we find that f(s) can be well
approximated by an exponential function with decay length l (see
figures 1a–b):

f sð Þ~ exp {s=lð Þ ð4Þ

Using the exponential fractional density (4) we find that the total
volume taken by live cells in a spherical tumour cluster is

Va rð Þ~F rð ÞV rð Þ~
ðr

0
4ps2f r{sð Þds

~

ðr

0
4ps2 exp {

r{s
l

� �
ds

ð5Þ

The resulting F(r) is well approximated by

F~
3l

3lzr tð Þ ð6Þ

(see the supplementary text for further details), and using the
approximate live-cell fraction (6), the complete evolution equations
are

dr
dt

~
r tð Þ

3
azdð Þ 3l

3lzr tð Þ{d

� �
ð7Þ

for the cluster radius, and

dV
dt

~ azdð Þ 3l

3lz 3V tð Þ=4p½ �1=3
V tð Þ{dV tð Þ ð8Þ

for the total cluster volume. The computer simulations also indicate
that l – and thus the distribution of live cells – depends weakly on
cluster radius (see figure 1c):

l rð Þ~l0zl1 exp {r=fð Þ ð9Þ

The live fraction F(r) can be measured in actual experimental
MTS, and we find that expression (7) with the decay length (9)
provides an excellent description of data in the literature, which
have never been modelled before (see figure 2). Data in Freyer and
Sutherland17 were taken with spheroids obtained from EMT6/Ro
cells grown under standard oxygen and glucose concentrations
(the original data are shown in the top panel of figure 3 in17).
Each measurement is the mean of 20–25 spheroids of the same
size. Data in Kunz-Schughart et al.18 were taken with single spher-
oids of a given size obtained from both Rat1-T1 and MR1 cells
(the original data are shown in panel C of figure 2 in ref. 18). The
viable cell rim thickness was measured by careful histologic ana-
lysis of serial sections. We have estimated the total fraction of live
cells F(r) from these experimental data by calculating the ratio
between the measured rim thickness of viable cells and spheroid
diameter. These estimates are rather rough, however they provide
interesting hints on model behaviour. Figure 2 shows the Bayesian
regressions of expression (6) both with constant and with variable l.
According to the classification in table S2 – which reports standard
criteria for model comparison – there is very weak evidence to prefer
the variable-lambda model over the constant-lambda one. The Bayes
factor of 6.63 corresponds to a ‘‘Not worth more than a bare men-
tion’’ category of evidence support, although there is slightly stronger
support for the model with variable-lambda.

What happens if the cell cluster is not spherical, as a tumour cord?
In this case we can still write V 5 Ax3, where x is some characteristic
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length of the tumour, like a chord that joins two recognizable, fixed
features on the tumour surface, and where we assume that the
tumour shape remains roughly the same as the tumour grows.
Then, assuming the same kind of exponential fractional density
f(s), the total volume occupied by the live cells is

Va xð Þ<
ðx

0
e{ x{sð Þ=lA

x{sð Þ2

x2
ds<

3l

3lz V xð Þ=A½ �1=3
V xð Þ

which this leads to the same F function introduced above.
It is interesting to notice that the growth model (8) can be recast as

a differential system. We rewrite first the defining equation (8) as

dV
dt

~c tð ÞV tð Þ

where c(t) is the time-dependent total rate of change of the MTS
volume

c tð Þ~ azdð ÞF tð Þ{d~ azdð ÞVa tð Þ
V tð Þ {d

with the initial condition c(0) 5 a. A straightforward but lengthy
calculation (reported in the supplementary text) shows that

dc

dt
~{ azdð Þ r tð Þ

3l
z1

� �
F tð Þ{1

� �
c tð Þ ð10Þ

The differential system for V and c can be compared with the similar
differential system for the phenomenological Gompertz model19–21:

dV
dt

~cG tð ÞV tð Þ

dcG

dt
~{bGcG tð Þ

with cG(t) 5 aGe2bGt and aG 5 cG(0). The term in square brackets in
equation (10) is actually quite close to a constant over a wide range of
r/l values, so that bG loosely corresponds to (a 1 d) [(r(t)/3l 1 1)
F(t)21], and we see that the phenomenological Gompertz model –
widely regarded as a sort of ‘‘golden standard’’ for the description of
tumour volume growth20–22 – naturally arises as an approximation of
the new model (8).

To assess the validity of the growth model, and to frame more
precisely its relationship with the time-tested Gompertz model, we
turned to real data obtained in vitro with tumour MTS. As explained
in the methods section, we collected data from spheroids obtained
with three different cell lines: 9l, from a rat glioblastoma; U118, from
a human glioblastoma; MCF7, from a human breast carcinoma. The
analysis of experimental data was carried out with the Bayesian tech-
niques described in the methods section and in the supplementary
text, and we estimated both the model parameters, and the Bayes
factors for model selection23. Here we consider the results obtained
with these three cell lines, and some of them are shown in figure 3.
The full set of figures is in the supplementary text.

9l cell line. We considered the 32 individual spheroids of the 9l cell
line as separate data sets. Consequently, we derived 32 independent
posterior parameter distributions, and computed the Bayes factor for
comparing both variants of the new model to the classical Gompertz
model separately, 32 times. This allowed us to analyze the stability of
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Figure 2 | Total fraction of live cells F(r) estimated from actual
experimental data in refs. 17 and 18. Circles represent the aggregate

measurements of individual MTS obtained with Rat1-T1, MR1, and

EMT6/Ro cells. The solid black line is the estimate obtained from

expression (6), assuming variable l as defined by equation (9) – Maximum

a posteriori (MAP) values are: l0 5 48.96 6 0.05 mm, l1 5 77.48 6

0.05 mm, f 5 48.96 6 0.05 mm – while the dashed line is the estimate

obtained with constant l (MAP value: lc 5 54.64 6 0.05 mm).

Figure 1 | a. Simulation data closely follow the exponential function (4).

The plot shows f(s) for a simulated MTS, at about 28.5 days from the

start of the numerical experiment with a single initial cell. In this

numerical experiment the cell duplication time is about one day. The

solid red line is a least-squares exponential regression, which in this case

yields l 5 52.7 6 1.0 mm. b. Simulation data for the same MTS at

different times (roughly equally spaced, starting at 12.8 days of

simulated time, when about 50% of the cells are still alive near the MTS

center; different colors map different times, increasing from blue to

dark red) with log vertical scale. In this representation true exponentials

should display as straight lines: the straight line is drawn to guide the

eye, and corresponds to an exponential with l 5 80 mm. At large depth

there is a marked deviation from the exponential behavior, but this is

not important in determining the growth law, because the fraction of

live cells is very low there, and greater depths also mean spherical shells

with smaller volume, which weigh less in the growth law. c. Estimated

values of l from the data in panel b. l changes slowly as the MTS grows;

the solid line is a fit with expression (9).
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our conclusions in the light of evidence coming from independent
biological replicates of the experiment.

Predictive posteriors for data coming from the 32 separate spher-
oids are depicted in Figure S5. Generally, model predictions are
similar for both the Gompertz model and the two variants of the
new model, with a somewhat ‘‘stronger nonlinearity’’ of the predic-
tions drawn from the new model.

Parameter posteriors for all 32 spheroids are located quite com-
pactly for the Gompertz model, see, for example, the posterior mar-
ginals for the first spheroid displayed in Figure S6. At the same time,
the new model allows for a wider variation of the posteriors, as
depicted in Figures S7 and S8 This is an expected result, as the new
model is more complex than the traditional Gompertz model, and as
there are more parameters in this model, therefore there are more
degrees of freedom. Natural identifiability problems with the new
model are tackled properly in this case, by considering complete
parameter posteriors instead of only the maximum likelihood estim-
ate of model parameters.

The Bayesian framework handles uncertainty about particular
parameter values properly by considering the parameter posteriors
as multivariate distributions. Consider marginal distributions for
parameters d and l in Figure S7. On their own, when the rest of
the parameters are marginalized out, these parameters have wide and

vague posteriors, that hardly diverge from the corresponding priors.
However, when considered together, we observe large and significant
a posteriori correlation between these parameters (correlation coef-
ficient is 0.996 in this case). If the value of d is selected, the appro-
priate value for l follows almost deterministically. This is a property
of the new model detected without any prior knowledge, purely on
the basis of the experimental data, which shows the deep connection
between the shape of the distribution of live cells and the dead-cell
shrinking rate.

At the same time, the observation noise with variance s2 consid-
ered in both models, was found to be almost independent a posteriori
from other model parameters, with the largest correlation coefficient
for Gompertz model of 0.07 (correlation of s and aG), and the largest
correlation coefficient for the new model of 0.059 (correlation of s
and a), and the largest correlation coefficient for the new model with
variable l of 20.024 (correlation of s and d).

Plots of the parameter posterior marginals, samples from multi-
variate parameter posteriors, and correlation coefficients for other
spheroids in our complete data set, as well as the code to replicate our
data analysis, can be obtained from the authors on request. The
results presented in the supplementary text are selected to represent
a typical outcome of the inferential experiment. There were no spher-
oids in this data set that produce qualitatively different results.

Figure 3 | Bayesian analysis of experimental data. Top panels: representative growth data (circles) of individual tumour MTS obtained with cell lines 9l,

U118, and MCF7. The lines show the predictive posteriors computed by Bayesian inference with our model at the following percentile levels: 2.5%

(orange), 25% (red), 50% (green), 75% (cyan), 97.5% (blue). Deviation of the data from these model predictions was identified as observation error.

Bottom panels: box-plots of the Bayes factor that compares the new model with constant l and the Gompertz model. The Bayes factors are calculated for n

individual MTS, and the box plots represent their distributions. The Bayes factors are always greater than 1 and always favor our model, sometimes

strikingly so. The background colored bands show levels of evidence to prefer our model: red, weak evidence; orange, positive evidence; green, strong

evidence; blue, very strong evidence (levels are chosen according to the suggestion of Kass and Raftery23, see the supplementary text). In this analysis we

also obtain Maximum a posteriori (MAP) estimates of the model parameters; we find the following mean values from populations of MAP estimates with

constant l: lc 5 15.3 6 1.7 mm (9l); lc 5 19.3 6 1.9 mm (U118); lc 5 16.2 6 1.9 mm (MCF7).
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We also performed evidential model comparison, to check which
of the considered models is better supported by our experimental
data and if the difference of evidence support is significant. We
computed the Bayes factor to compare evidence support for the
new model versus the evidence support for the Gompertz model as
discussed in the supplementary text. The Bayes factor was computed
32 times, separately for every spheroid. We found that in every single
case the new model was preferred to the traditional Gompertz model
by the experimental evidence. The sample of 32 computed Bayes
factors comparing Gompertz model to the new model with constant
l is depicted in Figure S9. The weakest Bayes factor in this sample –
for spheroid 31, predictions depicted in the penultimate plot of
Figure S5 – qualified the category of evidence support as ‘positive’
while for every other spheroid the preference for the new model was
‘very strong’.

There is much smaller evidence to prefer the new model with
variable l over the one with constant l. Corresponding Bayes factors
are depicted in Figure S10. Assuming equal a priori probabilities of
our three alternative models, we can compute the a posteriori odds of
each of the models to be the preferred one. Corresponding bar charts
are depicted in Figure S11.

Bayesian analysis of this data set demonstrates that the new model
of tumour growth not only gives biological interpretation to model
parameters, but also provides better quality of predictions, and is
better supported by the experimental evidence.

U118 cell line. The inference results for the data obtained from U118
cell line are qualitatively similar to the results for the 9l cell line.
Model parameters, of course, may have slightly different values to
reflect the specific growth characteristics for the tumours of the U118
line. Predictive posteriors for 8 data sets, collected from separate
spheroids of this type, are depicted in Figure S12.

Parameter posteriors obtained using the data from U118 spher-
oids demonstrate the same qualitative properties as the parameter
posteriors for the 9l cell line discussed in the previous section. At the
same time, the values of the parameters quantitatively shift a little to
reflect differences in cell line phenotypes. See the marginals to the
parameter posteriors computed from the first spheroid data in
Figures S13, S14 and S15.

We computed the Bayes factor for preferring the new model with
constant l over the traditional Gompertz model. The Bayes factor

was computed 8 times, separately for every spheroid. We found that
in every single case the new model was very strongly preferred to the
traditional Gompertz model by the experimental evidence. In every
case, the scale of the Bayes factor suggested extremely strong evid-
ential support for the new model in comparison to the Gompertz
model. The sample of 8 computed Bayes factors is depicted in Figure
S16. At the same time, the Bayes factor for preferring the new model
with variable l over the new model with constant l, while showing
some preference for variable l, has a much lower scale of the evid-
ence, see Figure S17. Assuming equal a priori probabilities of our
three alternative models, we can compute the a posteriori odds of
each of the models to be the preferred one. Corresponding bar charts
are depicted in Figure S18.

Again, Bayesian analysis of data obtained from the U118 cell line
demonstrates better predictive power of the new model. Evidence in
our experimental data very strongly supports preference of the new
model over the traditional Gompertz model.

MCF7 cell line. The inference results for the data obtained from
MCF7 cell line are qualitatively similar to the results for the 9l and
U118 cell lines. Model parameters may have slightly different values
to reflect the specific growth characteristics for the tumours of the
MCF7 line. Predictive posteriors for 5 data sets, collected from
separate spheroids of this type, are depicted in Figure S19.

Predictive posteriors in Figure S19 display prominently the cap-
ability of the new model to demonstrate more flexible dynamic beha-
viour. Left hand side plots, produced using Gompertz model, in most
cases match the data much worse than the right hand side plots
produced with the new model.

Parameter posteriors obtained using the data from MCF7 spher-
oids demonstrate the same qualitative properties as the parameter
posteriors for the U118 cell line discussed in the previous section. At
the same time, the values of the parameters quantitatively shift a little
to reflect differences in cell line phenotypes. See the marginals to the
parameter posteriors computed from the first spheroid data in
Figures S20, S21 and S22.

We computed the Bayes factor for preferring the new model with
constant l over the traditional Gompertz model. The Bayes factor

Figure 5 | The box plots summarize the distributions of the MAP
estimates of l0 and l1 for the model with variable l, for the three cell lines.

Figure 4 | The box plots summarize the distributions of the MAP
estimates of lc for the model with constant l, for the three cell lines.
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was computed 5 times, separately for every spheroid. We found that
in every single case the new model was very strongly preferred to the
traditional Gompertz model by the experimental evidence. In every
case, the scale of the Bayes factor suggested extremely strong evid-
ential support for the new model in comparison to the Gompertz
model. The sample of 5 computed Bayes factors is depicted in Figure
S23. At the same time, the new model with variable l is preferred to
the model with constant l, corresponding Bayes factors are depicted
in Figure S24. Assuming equal a priori probabilities of our three
alternative models, we can compute the a posteriori odds of each of
the models to be the preferred one. Corresponding bar charts are
depicted in Figure S25.

The Bayesian analysis of the data obtained from MCF7 cell line
demonstrates the greater predictive power of the new model.
Evidence in our experimental data very strongly supports preference
of the new model over the traditional Gompertz model.

Distribution of l in the experimental tumour spheroids. In the
analysis reported above, we find that there is little difference between
the full 3-parameter expression for variable l, and the simplified ver-
sion with a fixed, effective lc – the more complex expression has only
a weak advantage over the fixed l model. We also find that the
estimates of l fluctuate in a limited region. Figure 4 shows box
plots that summarize the distributions of the MAP estimates of lc

for the model with constant l, for the three cell lines. Correspond-
ingly, figure 5 shows box plots that summarize the distributions of
the MAP estimates of l0 and l1 for the model with variable l.

Discussion
The l function that describes the thin layer of viable cells around the
central necrotic core observed in experimental tumour MTS, has a
special role in the new models. Using data from both in silico and in
vitro experiments we find that l roughly spans the range 10–150 mm
(see figures 1, 2, 4, and 5), in agreement with independent visual
observations carried out on MTS tissue sections (see e.g. refs. 17
and 24) and on tumour cords from rodent and human vascularized
solid tumours3. This also supports the idea that the model applies to
non-spherical tumours as well.

In the computational environment, l is not an input, but emerges
from the combined dynamics of growth with diffusion and the indi-
vidual biochemistry of cells. This parameter can be measured inde-
pendently from tissue sections and thus the model could be used to
predict tumour growth. Conversely, l can be estimated by nonlinear
fit of tumour growth data and contribute to the biological classifica-
tion of tumours. We conjecture that this shall help in determining the
aggressiveness and the growth potential of solid tumours, and thus
assist both experimental and clinical oncology.

Methods
Experimental methods: cell lines and spheroid culture. We used the following
established tumour cell lines: 9l, from a rat glioblastoma; U118, from a human
glioblastoma; MCF7, from a human breast carcinoma. Data obtained with 9l and
U118 spheroids, and the experimental procedure have been described previously25.
Data obtained with MCF7 cells are new. The 9l and U118 cells were obtained from
ATCC. The MCF7 cells were purchased from ECACC and used to obtain spheroids
from monoclonal cells.

All cells were cultured at 37uC in a 5% carbon dioxide atmosphere in RPMI-1640
medium supplemented with 10% heat-inactivated fetal bovine serum (FBS), anti-
biotics, and passaged weekly. In the case of 9l and U118 cells, 106 cells were inoculated
in 10 ml complete medium in Petri dishes on a thin layer of agar (10 ml of a 0.75% w/
v solution of agar in complete medium). Spheroids of about 200 mm of diameter were
isolated by micromanipulation and grown individually into the wells of 24-well
culture plates containing 1 ml of agar and filled with 1 ml of medium. In this case the
first growth phase of tumour spheroids could not be observed, and for this reason we
turned to the spheroids from cloned MCF7 cells. The cells were seeded at the limiting
dilution of 0.1 cells/well into the wells of five 96-well culture plates filled with 100 ml
of agar and grown in an equal volume of complete medium.

The presence of single cells in the wells was carefully checked by visual inspection
using a digital microscope EVOSci (AMG, Bothell, WA, U.S.A.). Spheroid radius was
then measured from digital photomicrographs using the image analysis software

ImageJ64-1.45i (http://imagej.nih.gov), calculating the spheroid projected areas and
assuming a spherical shape.

Parameter inference. For parameter inference and model comparison we use
Bayesian methods that are reviewed in the supplementary text. Here we describe
those details that apply to the data analysis reported above.

The choice of priors, and the likelihood. We assumed independent distributions of all
of the priors for model parameters

p hjMð Þ~Pn
i~1p hijMð Þ ð12Þ

and we assumed normal observation noise with unknown variance s2. As we consider
the variance of the observation noise as an additional parameter, we defined an
independent prior over s

p sð Þ~exp 100:10{3 mm3
� 	

ð13Þ

in the case of 9l cells, where the original measurements are reported as volumes;
similarly

p sð Þ~exp 100 mmð Þ ð14Þ

in the case of U118 and MCF7 cells, where the original measurements are reported as
radii. Here exp(a) denotes an exponential distribution with mean a.

We employed the same exponential distribution as the prior for the model para-
meters as well, as it is wide enough to be uninformative, while still expressing our
preference for smaller parameter values in the resulting solution.

Vi p hijMð Þ~exp 100 uið Þ ð15Þ

where ui are the units associated to the i-th parameter.
We assumed the same scale of the observation noise over all of the observed time

points, and therefore we define our likelihood as

p DjM,h,sð Þ~PN
i~1N Di w h,Xið Þ,s2

� 	
ð16Þ

where there are N data points, Xi is the time when the size of the spheroid Di was
measured, w(h,Xi) is a prediction drawn from the considered model produced by
solving a corresponding initial value problem with parameters h and Xi. N : :,:ð Þ
denotes the Gaussian probability density function.
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