Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Bactericidal effects of 405-nm light exposure demonstrated by inactivation of Escherichia, Salmonella, Shigella, Listeria and Mycobacterium species in liquid suspensions and on exposed surfaces

Murdoch, Lynne and MacLean, Michelle and Endarko, E and MacGregor, Scott and Anderson, John (2012) Bactericidal effects of 405-nm light exposure demonstrated by inactivation of Escherichia, Salmonella, Shigella, Listeria and Mycobacterium species in liquid suspensions and on exposed surfaces. ScientificWorld Journal, 2012.

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The bactericidal effect of 405 nm light was investigated on taxonomically diverse bacterial pathogens from the genera Salmonella, Shigella, Escherichia, Listeria, and Mycobacterium. High-intensity 405 nm light, generated from an array of 405-nm light-emitting diodes (LEDs), was used to inactivate bacteria in liquid suspension and on exposed surfaces. L. monocytogenes was most readily inactivated in suspension, whereas S. enterica was most resistant. In surface exposure tests, L. monocytogenes was more susceptible than Gram-negative enteric bacteria to 405 nm light when exposed on an agar surface but interestingly less susceptible than S. enterica after drying onto PVC and acrylic surfaces. The study findings, that 405 nm light inactivates diverse types of bacteria in liquids and on surfaces, in addition to the safety advantages of this visible (non-UV wavelength) light, indicate the potential of this technology for a range of decontamination applications.