Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Mechanical strength of silica fiber splices after exposure to extreme temperatures

Perry, Marcus and Niewczas, Pawel and Johnston, Michael and Cook, Kevin and Canning, John (2012) Mechanical strength of silica fiber splices after exposure to extreme temperatures. In: OFS2012 22nd International Conference on Optical Fiber Sensors. SPIE--The International Society for Optical Engineering..

[img] PDF (Mechanical strength of silica fiber splices after exposure to extreme temperatures)
Mechanical_strength_of_silica_fiber_splices_after_exposure_to_extreme_temperatures.pdf - Accepted Author Manuscript
License: Unspecified

Download (559kB)

Abstract

By using a combination of type-I and regenerated gratings, the mechanical strength of optical fiber splices after exposure to temperatures over 1300 C was characterized. Splice strength was found to decrease with temperature with a secondorder polynomial dependence after exposure to environments hotter than 500 C. Splices exposed to temperatures above 1300 C were 80% more fragile than non-exposed splices. The lack of optical attenuation and the narrowing distribution of breaking strengths for higher temperatures suggest surface damage mechanisms, such as hydrolysis, play a key role in weakening post-heating and that damage mechanisms dominate over strengthening induced by crack melting.